

Model Engineering - DLMDSME01

IU International University of Applied Sciences

M.Sc. Data Science 120 ECTS

Forecasting Model of Rescue Drivers Using MS-TDSP

Aaron K. Althauser

Enrolment number: 92014910

May 31st, 2023

ii

Table of Contents

List of Figures iii

List of Abbreviations iii

1 Executive Summary 4

1.1 Challenge 4
1.2 Solution 4

2 Forecasting Model of Rescue Drivers Using MS-TDSP 5

2.1 Business Understanding 5
2.2 Data Acquisition & Understanding 5
2.3 Modeling 14

2.3.1 Benchmark Models 14
2.3.2 Final Prediction Model 19

2.4 Deployment 20
2.4.1 Git Structure 21
2.4.2 Dashboard Development 21

3 Conclusion 22

References 23

iii

List of Figures
Figure 1. Initial view of dataset columns 6

Figure 2. Data cleaning 7

Figure 3. Preparation for time series indexing 7

Figure 4. Quick statistics computation 8

Figure 5. Number of drivers called in sick vs. time of year 9

Figure 7. Correlation matrix 10

Figure 8. Time series visualization of the data 11

Figure 9. Seasonality trends for standby drivers needed 12

Figure 10. Outliers in number of sick drivers 12

Figure 11. Emergency calls vs. standby drivers needed 13

Figure 12. Standby drivers needed vs. additional drivers needed 13

Figure 13. Model evaluation of baseline means 15

Figure 14. Baseline mean 16

Figure 15. Baseline mean of day/week/year 16

Figure 16. Linear regression model creation and evaluation 17

Figure 17. Evaluation between baseline means and linear regression models 18

Figure 18. Initial r-score and best training set size, SVR 19

Figure 19. Initial r-score and best training set size, BNB 19

Figure 20. BNB model scores after fine tuning 20

Figure 21. SVR model scores and parameters 20

Figure 22. Conceptual GUI model 21

List of Abbreviations
BNB Bernoulli Naïve Bayes
DWH Data Warehouse
GUI Graphical User Interface
MAE Mean Absolute Error
ML Machine Learning
MRE Max Residual Error
MS-TDSP Microsoft Team Data Science Process
MSE Mean Squared Error
RMSE Root Mean Squared Error
SVR Support Vector Regression

 4

1 Executive Summary
The Berlin Red Cross rescue service (BRC) answers to emergency calls when people are in

need. On any given day, there are a set amount of rescue drivers residing on standby to answer

these calls. When rescue drivers are not able to work due to temporary illnesses, the estimated

number of drivers needed in a day can be interchangeable. The BRC allots a flat total of 90

standby-drivers every day; however, the HR planning department struggles with this approach

since seasonal weather patterns affect employee health and allocating a flat number of standby-

drivers often leads to having not enough or too many drivers standing by.

Our firm took up the task of fixing this organizational puzzle. We used our expertise in predictive

modeling to develop a solution for the BRC that leverages machine learning (ML) techniques and

data science. The solution developed can hereby be utilized by the organization to monitor, re-

fine, and predict their approach to help redistribute budget towards cost efficient business goals.

1.1 Challenge

The task is to develop a solution that allows the planning department to assign standby drivers

more accurately. Accuracy, in this case, means that there is minimal amount of extra standby

drivers assigned that do not get used, while there is a maximized number of days where addi-

tional standby drivers do not need to be assigned.

In developing this solution, there are many variables that need to be considered. The challenge

herein lies in the business’ ability to understand which features of the dataset will help to predict

an optimal number of standby drivers in need, which features can properly account for an accu-

rate prediction, and the total volume, value, and variety of the organization’s data.

1.2 Solution

Our solution takes the necessary steps to clean and preprocess the accumulation of data in

BRC’s data warehouses (DWH) before using it to train ML models that make predictions. As a

result of the developments, the company was able to create a solution that not only predicts the

optimal quantity of standby drivers needed on a given day, but also improved the coefficient of

determination (R2) score from the initial baseline models’ 7.4% to over 99%, while lowering the

root mean squared error (RMSE) rates from 33.73 to under 0.01.

5

2 Forecasting Model of Rescue Drivers Using MS-TDSP
The Microsoft Team Data Science Process (MS-TDSP) methodology is used to provide a team-

oriented and methodical approach to this task. Using this industry standard method allowed the

company to produce a solution that is in line with current data science methodologies for suc-

cessful businesses. In the following section, the MS-TDSP approach will be briefly detailed by

outlining the results of the company’s research, followed by step-by-step breakdowns of the task

results.

2.1 Business Understanding

In this phase, the necessary steps need to be taken to ensure that business goals are aligned

with the end users of the business’ efforts. Here, action taken by the business directly affects the

rescue drivers employed by BRC. One step taken to ensure proper variables are being used in

predictive models was to communicate with these drivers directly, as their input and interpretation

is highly valuable. We also approached the IT department of BRC to understand what kind of

data is being collected and how we could most efficiently extract, transfer, and load the data

using our developed systems.

2.2 Data Acquisition & Understanding

In this phase, the company made the first statistical tests of the acquired data to understand how

to approach the solution. This began with an exploratory data analysis and preprocessing, which

lead to creating visualizations of the data. The complete code can be referenced in the Source

Code annex. The main steps taken to achieve this step were to:

1. Visualize. Error! Reference source not found. shows an initial subsection of the data

printed to gain an initial understanding the data types, columns, and rows. The first ob-

servation is that the type for the date column needs to be changed from ‘object’ to

‘datetime’ for proper time series indexing.

2. Clean. The data can be cleaned by deleting unnecessary columns, adjusting data types,

and removing any duplicate rows as shown in Figure 2.

3. Optimize. Re-indexing data for time series querying by ensuring every row accounts for

one day, and the interval between each row is standardized (Figure 3). This also includes

a step to add columns to the data to separate individual aspects of dates (i.e., day, month,

year) into features and join them with the data.

6

Figure 1. Initial view of dataset columns

4. Compute.
a. Quick statistics of the dataset (mean, standard deviation, percentiles, and counts)

to identify any outliers or significant trends, shown in Figure 4. There are clear

outliers in the number of standby drivers needed (sby_need) and additional drivers

(dafted). These are identified and removed in a later stage and can be seen in the

full Source Code.

b. The correlation matrix to visualize relationships between the features, shown in

Figure 6. The matrix shows a few relationships that are noteworthy of exploring

further: the number of sick drivers versus time of year (month, week, day, and

season; Figure 5), the number of emergency calls versus the number of standby

drivers needed (Figure 10), and the number of standby drivers needed on a given

day versus the number of additional drivers needed (Figure 11).

7

Figure 2. Data cleaning

Figure 3. Preparation for time series indexing

8

Figure 4. Quick statistics computation

5. Plot. Visualize the data using both time series graphs that show any trends or seasonality

in the data, and individual graphs that show the relationships between selected variables.

a. In the time series plots (Figure 7), there are a few observations made:

i. Potential outliers can be seen in the graphs of ‘drivers called sick on duty’

and ‘standbys-activated on a given day’ (sby_need); the former is further

explored in Figure 9 but found to be within three standard deviations of the

mean and left in the dataset, and the latter is visualized and removed (see:

ModelEng_ForecastRescueDrivers_EDA.py)

ii. Trends can be observed in ‘drivers called sick on duty’ and ‘emergency

calls’ that may be understood better using regression techniques and will

be further tested in the benchmark model creation phase.

iii. Seasonality patterns are observed in ‘standbys…’ and ‘add. drivers

needed’. These are further explored in Figure 8, which shows the high

shelf of need for standby drivers are between the months of May and Au-

gust, within the first week of the month and the beginning of the week, and

interestingly the number of drivers needed has been steadily increasing

annually since 2018.

b. Further relationships between variables were graphed in the following:

i. Figure 5, which shows the seasonality patterns in the number of sick driv-

ers. Here there is an expected seasonal correlation between variables

which overall holds true: most sick drivers call in between the months of

August and November which is known to be flu and cold season in Berlin.

Another observation is that the number of sick drivers increases steadily

9

by day as the month progresses, and this could be explored in another

study.

ii. Figure 10, which shows the relationship of emergency calls versus the

number of standby drivers needed, explains an expected linear relation-

ship. One interesting note about this relationship is the three tiers of scat-

tered data points; these are separated by year, as with each year the num-

ber of both calls and drivers increases.

iii. Figure 11, which shows the number of standby drivers needed related to

the number of additional drivers needed. Because BRC assigns 90 drivers

to standby, there is nothing further to investigate as it is an obvious linear

relationship as the number of drivers needed extends beyond 90.

Figure 5. Number of drivers called in sick vs. time of year

 10

Figure 6. Correlation matrix

 11

Figure 7. Time series visualization of the data

12

Figure 8. Seasonality trends for standby drivers needed

Figure 9. Outliers in number of sick drivers

13

Figure 10. Emergency calls vs. standby drivers needed

Figure 11. Standby drivers needed vs. additional drivers needed

14

2.3 Modeling
The first step to modeling is to understand the problem in which we are trying to solve with ML.

In this solution, we were tasked with creating a model that optimally predicts how many standby

drivers will be needed on any given day. For this problem, a regression model will be the most

appropriate as the target variable for the dataset is numerical and there seem to be trends that

can be explained with linear models. The next step would be to decide on the metrics that will be

used to explain success of the model. For this problem, we are looking to minimize the number

of days where not enough drivers are waiting on standby, while minimizing the days where too

many drivers are assigned to standby.

2.3.1 Benchmark Models

We created baseline models that establish a benchmark for the final predictive models to be

measured against. The baseline models were the calculated mean of standby drivers needed by

different periods (day, day of week, season, e.g.), and a simple linear regression model. The

steps in completing this phase are detailed as follows:

1. Mean models

a. Calculate baseline mean of standby drivers needed (Figure 13); by day (month),

day (week), and day (year) (Figure 14).

b. Calculate the error metrics of baseline mean models. The output of these compu-

tations is shown in Figure 12.

2. Linear regression model. Split data in test and train datasets, fit data to the model and

calculate model error (Figure 15). R2 was an important metric to score in this model as it

will be used in further regression analysis in more advanced models, so establishing a

benchmark score was vital to the model building process.

3. Compare benchmark models. Seen in Figure 16, the models are compared using the

same metrics (RMSE, MSE, MAE, and MRE).

From our creation and evaluation of benchmark models, it was clear that there is much room for

improvement. The model with the best performance overall, meaning the lowest RMSE and MRE

scores was the baseline mean model by year (Figure 16). The next step was to refine the results

beyond these benchmark models.

15

Figure 12. Model evaluation of baseline means

 16

Figure 13. Baseline mean

Figure 14. Baseline mean of day/week/year

 17

Figure 15. Linear regression model creation and evaluation

18

Figure 16. Evaluation between baseline means and linear regression models

 19

2.3.2 Final Prediction Model

To train and select a final prediction model for the task at hand, it was necessary to first split the

dataset into training and testing sets. Then, the potential models were fit using the separated

training data and evaluated on the testing data. Next, steps were taken to fine tune the selected

models’ hyperparameters to improve the models’ accuracy. The models were evaluated again,

and a final model was selected based on its generalizability and minimized error.

Validation. After an initial scan of ML technique options to solve this problem, two different re-

gression techniques were chosen: Bernoulli Naïve Bayes1 (BNB) and Support Vector Regres-

sion2 (SVR). These models were chosen from their initial performance on the data, as they were

the only models to provide error scores that showed a relatively high performance with room to

fine tune their parameters. As a first step in refining the models, a function was written that iter-

ates over a list of training set sizes, splits the dataset into test/train sets using each size, fit the

model to the training data, and returns the best average model score after a simple two-fold

cross-evaluation (VanderPlas, 2016) (Figure 17 & Figure 18).

Figure 17. Initial r-score and best training set size, SVR

Figure 18. Initial r-score and best training set size, BNB

Tune Hyperparameters. To improve the prediction ability of the models it is necessary to manip-

ulate their hyperparameters. This was completed using what is known as a brute force cross-

validation technique (VanderPlas, 2016). In this technique and for each model, a list of parame-

ters with multiple variations is given. The algorithm will build and test a model for each combina-

tion of parameters in the given list. After each validation cycle, the best RMSE, R2, and model

parameters are recorded for further analysis, where the model with the lowest RMSE and highest

R2 is marked as the most accurate model.

Evaluate and select. After model creation and fine tuning of hyperparameters, each model was

analyzed on its performance and a final prediction model was selected. After an initial fitting of

1 https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html
2 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

20

the data to the BNB model, an r-score of 0.784 was recorded with a training set size of 66%;

however, after fine tuning hyperparameters using sklearn.model_selection.gridsearchCV3, the

model saw a rapid decline in performance (Figure 19). This could be attributed to a few reasons:

1. The default parameters of sci-kit learn are optimized for many common cases of using

the specific model and are more finely tuned than what even an expert data scientist could

improve upon.

2. Based on the results, the model is not experiencing overfitting (the event in which models

get hyper-tuned to their training data to a level where they’re not able to generalize to

new data). Evidently, the initial model was not overfitting the data originally due to the

performance not increasing dramatically.

3. The decisions for how training data was randomized could be causing fluctuations in

model performance, as the initial splitting of data into test/train sets was performed

against a randomized seed of the data.

Figure 19. BNB model scores after fine tuning

Finally, the SVR model was cycled after fine tuning/evaluation and selected as the best perform-

ing model due to its increased R2 and minimized RMSE after cross-validation. The final error

metrics and optimal model parameters are shown in Figure 20, which are stored for the company

for further use and refinement of the model.

Figure 20. SVR model scores and parameters

2.4 Deployment
Now that a prediction model has been created, the next steps in the MS-TDSP are to validate

the model’s performance with BRC to verify that the model provides a sufficient solution to the

business’ problem and that satisfaction is at its highest, and to deploy the model for use across

all business departments and teams, so that engineering teams can develop the model further

and BI teams can make ad hoc queries using insights gained from the model. The latter two

points will be addressed in the following sections.

3 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

21

2.4.1 Git Structure

The source code of the prediction model should be accessible to all teams within the organiza-

tion. It is highly advised by the company that all code is placed in a private repository such as

GitHub4 and organized for separate business purposes. A recommended structure of organizing

a repository can be found at: https://github.com/Azure/Azure-TDSP-ProjectTemplate. Here, the

company will find a template for MS-TDSP projects that can be cloned and used in their private

repository.

2.4.2 Dashboard Development

Like its source code, it is important in the MS-TDSP methodology for the model to be accessible

via a graphical user interface (GUI). A conceptual GUI in the form of a dashboard is recom-

mended by the company in Figure 21.

Figure 21. Conceptual GUI model

The proposed dashboard should be populated by extracted data from the DWH. Data is trans-

ferred back and forth between the model and the DWH. On the GUI, predictions, KPIs, and ad

hoc queries that utilize the model are visualized with user inputs affecting the visualizations.

Model error metrics and performance is visualized for users to understand the accuracy of its

predictions.

4 https://github.com/

22

3 Conclusion
The overall task to build a model that minimizes the number of occurrences where there are not

enough standby drivers, and simultaneously predict with minimal error how many drivers will be

needed on any given day, was solved by this solution. The proposed approach of using MS-

TDSP as a methodology to structure and facilitate cooperation between teams within the organ-

ization is a proven structure for data science projects, and if the business approaches the task

using this methodology, there will be guaranteed success.

A predictive model was presented to BRC that will help to optimize business operations. This

model, while already finely tuned to solve the specific task, has the opportunity to be improved

as more data becomes available to it. A GUI should be developed that allows all business units

to interact and generate reports based on findings from the model. A conceptual model of a GUI

was presented that the company can use as a starting point in its development.

 23

References
Microsoft. (2022, March 1). What is the Team Data Science Process? Retrieved from learn.microsoft.com:

https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview

VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O'Reilly Media, Inc.

 24

Appendix A. Source Code

A-1 ModelEng_ForecastRescueDrivers_EDA.py
#!/usr/bin/env python

coding: utf-8

Exploratory Data Analysis

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import matplotlib.pyplot as plt

import seaborn; seaborn.set()

df = pd.read_csv('./use_case_2/sickness_table.csv', low_memory=False)

drop columns

df = df.drop('Unnamed: 0', axis=1)

fix data types

df['date'] = pd.to_datetime(df['date'])

check for duplicates

df.drop_duplicates()

df.info()

df.head()

Prepare for time-series

df = df.sort_values(by='date')

Check time intervals

df['Time_Interval'] = df.date - df.date.shift(1)

df[['date', 'Time_Interval']].head()

print(f"{df['Time_Interval'].value_counts()}")

df = df.drop('Time_Interval', axis=1)

check if no date appears more than once

df.date.duplicated().sum()

check missing values

print(df.isnull().sum().sum())

df.describe()

Visualize data

fig, ax = plt.subplots(5, sharex=True, figsize=(12, 24))

ax[0].scatter(df['date'], df['n_sick'])

ax[1].scatter(df['date'], df['calls'])

ax[2].plot(df['date'], df['n_duty'])

ax[3].plot(df['date'], df['sby_need'])

ax[4].plot(df['date'], df['dafted'])

ax[0].set_ylabel('drivers called sick on duty')

ax[1].set_ylabel('emergency calls')

ax[2].set_ylabel('drivers on duty available')

ax[3].set_ylabel('standbys--activated on a given day')

ax[4].set_ylabel('add. drivers needed--not enough standbys')

fig.suptitle('Seasonal Features Data', fontsize=16, y=1.005, x=0.50)

plt.tight_layout()

fig.autofmt_xdate()

plt.savefig('seasonal_features.png')

plt.show()

What we can observe from visualization:

- Potential outlier in *n_sick* around 2018, in *sby_need* and *dafted*

- Possible regression trends in *n_sick* and *calls* (these will be tested
during creation of benchmark models)

- Time-series: seasonality patterns monthly (*sby_need* and *dafted*)

Let's check for outliers in *n_sick* column:

sns.boxplot(df['n_sick'])

plt.savefig('n_sick_outliers.png')

df[df['n_sick'] > 105]

From the plot it seemed that there were too many outliers above n=105,
however, from the table we can see that this is just an upper limit of the
data.

Now let's check the outliers in sby_need:

df[df['sby_need'] > 200]

It seems there are quite a bit of instances greater than two standard
deviations above the mean, which could affect the data negatively. Let's remove
those.

df = df.loc[((df['sby_need'] >= 0) & (df['sby_need'] <= 200))]

df.info()

Now let's check the seasonality of the data on when standy drivers are needed

df['year'] = pd.DatetimeIndex(df['date']).year

df['month'] = pd.DatetimeIndex(df['date']).month

df['day'] = pd.DatetimeIndex(df['date']).day

df['day_of_week'] = pd.DatetimeIndex(df['date']).dayofweek

df['day_of_year'] = pd.DatetimeIndex(df['date']).dayofyear

df['week_of_year'] = pd.DatetimeIndex(df['date']).weekofyear

df['quarter'] = pd.DatetimeIndex(df['date']).quarter

df['season'] = df.month%12 // 3 + 1

df.to_csv('cleaned_data.csv')

plt.figure(figsize=(18, 18))

i = 0

cols = ['year', 'month', 'day', 'week_of_year', 'day_of_week', 'day_of_year',
'quarter', 'season']

for col in cols:

 i+=1

 plt.subplot(4, 2, i)

 ax = sns.lineplot(x=col, y='sby_need', marker='o', data=df)

plt.savefig('time_series_plot.png')

plt.show()

Now let's explore the relationships between some variables by looking at the
correlation matrix

df.corr()

This shows a few positive correlations worth visualizing:

- Number of sick drivers vs. month/day/week/season

- Number of emergency calls vs. number of standby drivers needed

- Number of standby drivers needed vs. number of additional drivers needed

Number of sick drivers vs. month/day/week/season

plt.figure(figsize=(12, 12))

i = 0

cols = ['month', 'day', 'week_of_year', 'season']

for col in cols:

 i+=1

 plt.subplot(2, 2, i)

 ax = sns.lineplot(x=col, y='n_sick', marker='o', data=df)

plt.savefig('sick_vs_season.png')

plt.show()

Number of emergency calls vs. number of standby drivers needed

plt.figure(figsize=(10,10))

Remove instances where 0 drivers are needed

only_need = df.where(df['sby_need'] > 0)

fig, ax = plt.subplots()

ax.scatter(only_need['sby_need'], only_need['calls'])

ax.set_xlabel('sby-need')

ax.set_ylabel('calls')

plt.savefig('standby_need_vs_calls.png')

plt.show()

Number of standby drivers needed vs. number of additional drivers needed

plt.figure(figsize=(10,10))

fig, ax = plt.subplots()

ax.scatter(df['sby_need'], df['dafted'])

ax.set_xlabel('sby-need')

ax.set_ylabel('add. need')

plt.savefig('sby_need_vs_add.png')

plt.show()

A-2 ModelEng_ForecastRescueDrivers_Baseline-Model.py
#!/usr/bin/env python

coding: utf-8

Baseline Model

- Calculate driver need mean by day, day of week, season

- Establish a simple linear regression model

- Validate performance of the models to establish a benchmark

import pandas as pd

import numpy as np

import seaborn as sn

import datetime

import sklearn

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import max_error

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn; seaborn.set()

df = pd.read_csv('./cleaned_data.csv', low_memory=False)

df = df.drop(['Unnamed: 0'], axis=1)

Calculate mean

pd.set_option('mode.chained_assignment',None)

mean = np.round(df['sby_need'].mean(), 5)

df['bl_mean'] = mean

df.head()

Calculate mean by day (month)

x =
np.ceil(df.groupby('day')['sby_need'].mean()).to_frame('bl_mean_day_of_month'
).reset_index()

df = pd.merge(x, df, on='day')

Calculate mean by day (week)

x =
np.ceil(df.groupby('day_of_week')['sby_need'].mean()).to_frame('bl_mean_day_o
f_week').reset_index()

df = pd.merge(x, df, on='day_of_week')

Calculate mean by day (year)

x =
np.ceil(df.groupby('day_of_year')['sby_need'].mean()).to_frame('bl_mean_day_o
f_year').reset_index()

df = pd.merge(x, df, on='day_of_year')

df.head()

Define a function to calculate error metrics for baseline means

def metrics(y, y_hat, title='baseline mean', save_or_print='just_print', tar-
get_var='sby_need'):

 mse = np.round(mean_squared_error(y, y_hat), 5)

 rmse = np.round(np.sqrt(mean_squared_error(y, y_hat)), 5)

 mae = np.round(mean_absolute_error(y, y_hat), 5)

 max_r = np.round(max_error(y, y_hat), 5)

 print('=======')

 print(f'{title} (n={len(y)})')

 print('-------')

 print(f'| RMSE | {rmse} ')

 print(f'| MSE | {mse}')

 print(f'| MAE | {mae}')

 print(f'| Max | {max_r}')

 print('\n')

 if save_or_print is not 'just_print':

 with open('baseline_model_error_metrics.csv', 'a+') as file:

 date = datetime.datetime.now()

 row = f'\n{title}, {rmse}, {mse}, {mae}, {max_r}, {len(y)}, {tar-
get_var}, {date}'

 file.write(row)

 return rmse, max_r

bl_mean_rmse, bl_mean_max = metrics(df['bl_mean'], df['sby_need'], 'Baseline
Mean', 'save')

bl_mean_year_rmse, bl_mean_year_max = metrics(df['bl_mean_day_of_year'],
df['sby_need'], 'Baseline Mean - day/year', 'save')

bl_mean_month_rmse, bl_mean_month_max = metrics(df['bl_mean_day_of_month'],
df['sby_need'], 'Baseline Mean - day/month', 'save')

bl_mean_week_rmse, bl_mean_week_max = metrics(df['bl_mean_day_of_week'],
df['sby_need'], 'Baseline Mean - day/week', 'save')

Linear Regression Baseline Model

- Split data into test-train sets

- Fit data to model

- Evaluate model performance

Split data into test/train sets

x1 = pd.get_dummies(df[['day_of_year', 'day', 'day_of_week', 'year', 'month',
'season']].astype(str))

X1, X2, y1, y2 = train_test_split(x1, df['sby_need'], random_state=5,
train_size=0.7)

Fit data to model

from sklearn.linear_model import Ridge

ridge_model = Ridge(alpha=20)

ridge_model.fit(X1, y1)

y_hat = ridge_model.predict(X2)

print(ridge_model.score(X2, y2))

Evaluate model performance

lin_reg_bl_rmse, lin_reg_bl_max = metrics(y2, y_hat, 'Linear Reg.',
'just_print')

Compare Benchmark Models

results_rmse = [lin_reg_bl_rmse, bl_mean_week_rmse, bl_mean_month_rmse,
bl_mean_year_rmse, bl_mean_rmse]

results_max = [lin_reg_bl_max, bl_mean_week_max, \

 bl_mean_month_max, bl_mean_year_max, bl_mean_max]

print(f'Benchmark Results')

print('========')

print(f'LinReg: RMSE = {lin_reg_bl_rmse}, Max = {lin_reg_bl_max}')

print(f'BL-mean: RMSE {bl_mean_rmse}, Max = {bl_mean_max}')

print(f'BL-mean-week: RMSE = {bl_mean_week_rmse}, Max = {bl_mean_week_max}')

print(f'BL-mean-month: RMSE = {bl_mean_month_rmse}, Max =
{bl_mean_month_max}')

print(f'BL-mean-year: RMSE = {bl_mean_year_rmse}, Max = {bl_mean_year_max}\n')

print(f'*Best RMSE score* : {min(results_rmse)}')

print(f'*Best Max Error score* : {min(results_max)}')

According to the initial results, the Baseline Mean - Days/Year model out
performs all benchmarks.

A-3 ModelEng_ForecastRescueDrivers_Prediction-Model.py
#!/usr/bin/env python

coding: utf-8

Prediction Model

- Split data into test/train sets

- Fit data to potential models: Support Vector Regression & Bernoulli Naive
Bayes

- Evaluate performance of models using cross-validation

- Tune hyperparameters

- Evaluate model performance again

- Select best model for deployment

import pandas as pd

import numpy as np

import seaborn as sn

import datetime

import sklearn

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import max_error

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import r2_score

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import RandomizedSearchCV

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn; seaborn.set()

df = pd.read_csv('./cleaned_data.csv', low_memory=False)

df = df.drop(['Unnamed: 0'], axis=1)

Split data into train/test sets

Make feature matrix

x1 = pd.get_dummies(df[['day_of_year', 'day', 'day_of_week', 'year', 'month',
'season']].astype(str))

Merge sby_need with matrix

x1['sby_need'] = df['sby_need']

Split into train/test

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=0.8)

Make validation sets

Xval, Xval2, Yval, Yval2 = train_test_split(x1, x1['sby_need'],
train_size=0.5)

Model validation

- In order to verify optimal size of training set data, a function is used
to iterate through a list of sizes, split the data using each size, and return
the best average model score after two-fold cross-validation.

Support vector regression

from sklearn import svm

r2_best = 0

trainset_size = 0

for i in np.arange(0.5, 0.98, 0.02):

 # Split into train/test

 X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=i, ran-
dom_state=42)

 svr_model = svm.SVR(gamma='auto').fit(X1, y1)

 y_hat_svr = svr_model.predict(X2)

 svr_model_val1 = svm.SVR(gamma='auto').fit(Xval, Yval)

 svr_model_val2 = svm.SVR(gamma='auto').fit(Xval2, Yval2)

 yhat_svrm1 = svr_model_val1.predict(Xval2)

 yhat_svrm2 = svr_model_val2.predict(Xval)

 r2 = svr_model.score(X2, y2)

 r2_test = svr_model.score(X1, y1)

 r2_val1 = svr_model_val1.score(Xval2, Yval2)

 r2_val2 = svr_model_val2.score(Xval, Yval)

 r2_mean = np.mean([r2, r2_test, r2_val1, r2_val2])

 if r2_mean > r2_best:

 r2_best = r2

 trainset_size = i

print(f'Best R^2 : {r2_best}')

print(f'Best Train-set pct. : {np.round(trainset_size, 2)}')

svr = {'best_r2': r2_best, 'best_train_size': np.round(trainset_size, 2)}

Fit data to model - bernoulli naive bayes

from sklearn.naive_bayes import BernoulliNB

r2_best = 0

trainset_size = 0

for i in np.arange(0.5, 0.98, 0.02):

 # Split into train/test

 X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=i, ran-
dom_state=42)

 bnb_model = BernoulliNB(class_prior=None).fit(X1, y1)

 y_hat_bnb = bnb_model.predict(X2)

 bnb_val1 = BernoulliNB().fit(Xval, Yval)

 bnb_val2 = BernoulliNB().fit(Xval2, Yval2)

 y_hat_bnb_val1 = bnb_val1.predict(Xval2)

 y_hat_bnb_val2 = bnb_val2.predict(Xval)

 r2 = bnb_model.score(X2, y2)

 r2_test = bnb_model.score(X1, y1)

 r2_val1 = bnb_val1.score(Xval2, Yval2)

 r2_val2 = bnb_val2.score(Xval, Yval)

 r2_mean = np.mean([r2, r2_test, r2_val1, r2_val2])

 if r2_mean > r2_best:

 r2_best = r2_mean

 trainset_size = i

print(f'Best R^2 : {r2_best}')

print(f'Best Train-set pct. : {np.round(trainset_size, 2)}')

bnb = {'best_r2': r2_best, 'best_train_size': np.round(trainset_size, 2)}

Tune Hyperparameters

- Using brute force cross-validation to evaluate parameter performance, each
model will have a list of the parameters used for each validation cycle along
with the best score results.

- The best scores from each model tuning will be printed and automatically
selected.

Bernoulli Naive Bayes model

from sklearn.model_selection import train_test_split, RandomizedSearchCV

from sklearn.naive_bayes import BernoulliNB

from sklearn.metrics import r2_score, mean_squared_error

Split into train/test

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'],
train_size=bnb['best_train_size'], random_state=42)

param_grid = {

 'alpha': [0.1, 0.5, 1.0, 1.5],

 'fit_prior': [True, False],

 'binarize': [0.0, 0.5, 1.0]

}

scoring = {'R^2': 'r2', 'MSE': 'neg_mean_squared_error'}

search = RandomizedSearchCV(bnb_model, param_grid, cv=5, n_iter=10, scor-
ing=scoring, refit='R^2').fit(X1, y1)

print("Best R^2 score:", search.best_score_)

best_r2_score = -float('inf')

best_mse_score = float('inf')

best_model = None

for mean_r2, mean_mse, params in zip(search.cv_results_['mean_test_R^2'],
search.cv_results_['mean_test_MSE'], search.cv_results_['params']):

 if mean_r2 > best_r2_score:

 best_r2_score = mean_r2

 best_mse_score = mean_mse

 best_model = params

 elif mean_r2 == best_r2_score and mean_mse < best_mse_score:

 best_mse_score = mean_mse

 best_model = params

print("Best R^2 score:", best_r2_score)

print("Best MSE:", best_mse_score)

print("Best model:", best_model)

The models performance is lower after tuning hyper-parameters. This suggests
that:

1. The default parameters of Scikit-learn are more finely-tuned than what a
novice data scientist could initially create.

2. The model is not experiencing overfitting, as the performance on initial
model is not overly higher than the fine-tuned version.

3. The randomization of training data could be what is causing model perfro-
mance to fluctuate

Support Vector Regression model

Split into train/test

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'],
train_size=svr['best_train_size'], random_state=42)

param_grid = {

 'C': [0.1, 1, 10],

 'epsilon': [0.01, 0.1, 1],

 'kernel': ['linear', 'rbf'],

 'gamma': ['scale', 'auto'],

 'shrinking': [True],

}

scoring = {'R^2': 'r2', 'MSE': 'neg_mean_squared_error'}

search = GridSearchCV(svr_model, param_grid, scoring=scoring, refit='R^2',
cv=5).fit(X1, y1)

best_svr = search.best_estimator_

y_pred = best_svr.predict(X2)

r2 = r2_score(y2, y_pred)

mse = mean_squared_error(y2, y_pred)

print("Best R^2 score:", r2)

print("Best MSE:", mse)

print("Best parameters:", search.best_params_)

def select_best_model(models_dict):

 best_r2_score = -float('inf')

 best_mse_score = float('inf')

 best_model_params = None

 for (r2_score, mse_score), model_params in models_dict.items():

 if mse_score < best_mse_score or (mse_score == best_mse_score and
r2_score > best_r2_score):

 best_r2_score = r2_score

 best_mse_score = mse_score

 best_model_params = model_params

 return best_model_params, best_r2_score, best_mse_score

score_models_dict = {}

Iterate over all models in grid search results

for mean_r2, mean_mse, params in zip(search.cv_results_['mean_test_R^2'],
search.cv_results_['mean_test_MSE'], search.cv_results_['params']):

 score_models_dict[(mean_r2, -mean_mse)] = params

print("\nDictionary of R^2 scores, MSE scores, and corresponding models:")

for (r2_score, mse_score), model_params in score_models_dict.items():

 print("R^2 score:", r2_score)

 print("MSE score:", mse_score)

 print("Model parameters:", model_params)

 print("--------------------")

best_params, best_r2, best_mse = select_best_model(score_models_dict)

print("\nBest model parameters:", best_params)

print("Best R^2 score:", best_r2)

print("Best MSE score:", best_mse)

Appendix B. Jupyter Notebooks

B-1 Exploratory Data Analysis

B-2 Baseline Model

Benchmark Results
========
LinReg: RMSE = 44.31846, Max = 167.70059
BL­mean: RMSE 43.5718, Max = 181.43318
BL­mean­week: RMSE = 43.35615, Max = 182.0
BL­mean­month: RMSE = 42.74962, Max = 180.0
BL­mean­year: RMSE = 33.73285, Max = 141.0

Best RMSE score : 33.73285
Best Max Error score : 141.0

print(f'LinReg: RMSE = {lin_reg_bl_rmse}, Max = {lin_reg_bl_max}')
print(f'BL­mean: RMSE {bl_mean_rmse}, Max = {bl_mean_max}')
print(f'BL­mean­week: RMSE = {bl_mean_week_rmse}, Max = {bl_mean_week_max}')
print(f'BL­mean­month: RMSE = {bl_mean_month_rmse}, Max = {bl_mean_month_max}')
print(f'BL­mean­year: RMSE = {bl_mean_year_rmse}, Max = {bl_mean_year_max}\n')

print(f'*Best RMSE score* : {min(results_rmse)}')
print(f'*Best Max Error score* : {min(results_max)}')

B-3 Prediction Model

Best R^2 score: 0.9999999535634789
Best MSE: 7.872045324837176e­05
Best parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'linear', 'shri
nking': True}
Dictionary of R^2 scores, MSE scores, and corresponding models:
R^2 score: 0.9999999598546738
MSE score: 7.743527524104955e­05
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'linear', 'shrin
king': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.04571005143855864
MSE score: 1911.7009623166643
Model parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrink
ing': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.04800308663814628
MSE score: 1907.6581351291327
Model parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinki
ng': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9999956869757741
MSE score: 0.008303550524077632
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'linear', 'shrink
ing': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.047258474712806586
MSE score: 1908.6311988305708
Model parameters: {'C': 0.1, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinki
ng': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.04952557765021202
MSE score: 1904.6362925620194
Model parameters: {'C': 0.1, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9995617151084139
MSE score: 0.8441344048017452
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'linear', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.062269658421828265
MSE score: 1878.8455090174475
Model parameters: {'C': 0.1, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.06427348825334182
MSE score: 1875.3385613974108
Model parameters: {'C': 0.1, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.8372435978142292
MSE score: 333.686435817931
Model parameters: {'C': 1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.718968038316113
MSE score: 571.2616824252777
Model parameters: {'C': 1, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.8374365928527591
MSE score: 333.3063220493743
Model parameters: {'C': 1, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­

R^2 score: 0.7188120239564485
MSE score: 571.6731313808535
Model parameters: {'C': 1, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.8391010621291095
MSE score: 329.84998274868286
Model parameters: {'C': 1, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinking':
True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.7199407258196721
MSE score: 569.2082298309839
Model parameters: {'C': 1, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinking':
True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9988863324366494
MSE score: 2.3761025137285294
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrinki
ng': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9975393902709314
MSE score: 5.284376039466548
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9988792045127851
MSE score: 2.3874817570292985
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9975091672560007
MSE score: 5.3462195250408735
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.9984749449128648
MSE score: 3.1859373982539414
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True}
­­­­­­­­­­­­­­­­­­­­
R^2 score: 0.996825652151134
MSE score: 6.699423817466172
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinking':
True}
­­­­­­­­­­­­­­­­­­­­

Best model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'linear',
'shrinking': True}
Best R^2 score: 0.9999999598546738
Best MSE score: 7.743527524104955e­05
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site­packages/sklearn/mo
del_selection/_search.py:813: DeprecationWarning: The default of the `iid` parameter wil
l change from True to False in version 0.22 and will be removed in 0.24. This will chang
e numeric results when test­set sizes are unequal.
 DeprecationWarning)

