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1 Executive Summary 
The Berlin Red Cross rescue service (BRC) answers to emergency calls when people are in 

need. On any given day, there are a set amount of rescue drivers residing on standby to answer 

these calls. When rescue drivers are not able to work due to temporary illnesses, the estimated 

number of drivers needed in a day can be interchangeable. The BRC allots a flat total of 90 

standby-drivers every day; however, the HR planning department struggles with this approach 

since seasonal weather patterns affect employee health and allocating a flat number of standby-

drivers often leads to having not enough or too many drivers standing by.  

Our firm took up the task of fixing this organizational puzzle. We used our expertise in predictive 

modeling to develop a solution for the BRC that leverages machine learning (ML) techniques and 

data science. The solution developed can hereby be utilized by the organization to monitor, re-

fine, and predict their approach to help redistribute budget towards cost efficient business goals.  

1.1 Challenge 

The task is to develop a solution that allows the planning department to assign standby drivers 

more accurately. Accuracy, in this case, means that there is minimal amount of extra standby 

drivers assigned that do not get used, while there is a maximized number of days where addi-

tional standby drivers do not need to be assigned.  

In developing this solution, there are many variables that need to be considered. The challenge 

herein lies in the business’ ability to understand which features of the dataset will help to predict 

an optimal number of standby drivers in need, which features can properly account for an accu-

rate prediction, and the total volume, value, and variety of the organization’s data.  

1.2 Solution 

Our solution takes the necessary steps to clean and preprocess the accumulation of data in 

BRC’s data warehouses (DWH) before using it to train ML models that make predictions. As a 

result of the developments, the company was able to create a solution that not only predicts the 

optimal quantity of standby drivers needed on a given day, but also improved the coefficient of 

determination (R2) score from the initial baseline models’ 7.4% to over 99%, while lowering the 

root mean squared error (RMSE) rates from 33.73 to under 0.01.  



 

5 

 

2 Forecasting Model of Rescue Drivers Using MS-TDSP 
The Microsoft Team Data Science Process (MS-TDSP) methodology is used to provide a team-

oriented and methodical approach to this task. Using this industry standard method allowed the 

company to produce a solution that is in line with current data science methodologies for suc-

cessful businesses. In the following section, the MS-TDSP approach will be briefly detailed by 

outlining the results of the company’s research, followed by step-by-step breakdowns of the task 

results. 

2.1 Business Understanding 

In this phase, the necessary steps need to be taken to ensure that business goals are aligned 

with the end users of the business’ efforts. Here, action taken by the business directly affects the 

rescue drivers employed by BRC. One step taken to ensure proper variables are being used in 

predictive models was to communicate with these drivers directly, as their input and interpretation 

is highly valuable. We also approached the IT department of BRC to understand what kind of 

data is being collected and how we could most efficiently extract, transfer, and load the data 

using our developed systems.  

2.2 Data Acquisition & Understanding 

In this phase, the company made the first statistical tests of the acquired data to understand how 

to approach the solution. This began with an exploratory data analysis and preprocessing, which 

lead to creating visualizations of the data. The complete code can be referenced in the Source 

Code annex. The main steps taken to achieve this step were to: 

1. Visualize. Error! Reference source not found. shows an initial subsection of the data 

printed to gain an initial understanding the data types, columns, and rows. The first ob-

servation is that the type for the date column needs to be changed from ‘object’ to 

‘datetime’ for proper time series indexing.  

2. Clean. The data can be cleaned by deleting unnecessary columns, adjusting data types, 

and removing any duplicate rows as shown in Figure 2. 

3. Optimize. Re-indexing data for time series querying by ensuring every row accounts for 

one day, and the interval between each row is standardized (Figure 3). This also includes 

a step to add columns to the data to separate individual aspects of dates (i.e., day, month, 

year) into features and join them with the data. 
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Figure 1. Initial view of dataset columns 

  

4. Compute.  
a. Quick statistics of the dataset (mean, standard deviation, percentiles, and counts) 

to identify any outliers or significant trends, shown in Figure 4. There are clear 

outliers in the number of standby drivers needed (sby_need) and additional drivers 

(dafted). These are identified and removed in a later stage and can be seen in the 

full Source Code. 

b. The correlation matrix to visualize relationships between the features, shown in 

Figure 6. The matrix shows a few relationships that are noteworthy of exploring 

further: the number of sick drivers versus time of year (month, week, day, and 

season; Figure 5), the number of emergency calls versus the number of standby 

drivers needed (Figure 10), and the number of standby drivers needed on a given 

day versus the number of additional drivers needed (Figure 11). 
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Figure 2. Data cleaning 

 
Figure 3. Preparation for time series indexing 
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Figure 4. Quick statistics computation 

5. Plot. Visualize the data using both time series graphs that show any trends or seasonality 

in the data, and individual graphs that show the relationships between selected variables.  

a. In the time series plots (Figure 7), there are a few observations made: 

i. Potential outliers can be seen in the graphs of ‘drivers called sick on duty’ 

and ‘standbys-activated on a given day’ (sby_need); the former is further 

explored in Figure 9 but found to be within three standard deviations of the 

mean and left in the dataset, and the latter is visualized and removed (see: 

ModelEng_ForecastRescueDrivers_EDA.py) 

ii. Trends can be observed in ‘drivers called sick on duty’ and ‘emergency 

calls’ that may be understood better using regression techniques and will 

be further tested in the benchmark model creation phase. 

iii. Seasonality patterns are observed in ‘standbys…’ and ‘add. drivers 

needed’. These are further explored in Figure 8, which shows the high 

shelf of need for standby drivers are between the months of May and Au-

gust, within the first week of the month and the beginning of the week, and 

interestingly the number of drivers needed has been steadily increasing 

annually since 2018. 

b. Further relationships between variables were graphed in the following: 

i. Figure 5, which shows the seasonality patterns in the number of sick driv-

ers. Here there is an expected seasonal correlation between variables 

which overall holds true: most sick drivers call in between the months of 

August and November which is known to be flu and cold season in Berlin. 

Another observation is that the number of sick drivers increases steadily 
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by day as the month progresses, and this could be explored in another 

study.  

ii. Figure 10, which shows the relationship of emergency calls versus the 

number of standby drivers needed, explains an expected linear relation-

ship. One interesting note about this relationship is the three tiers of scat-

tered data points; these are separated by year, as with each year the num-

ber of both calls and drivers increases.  

iii. Figure 11, which shows the number of standby drivers needed related to 

the number of additional drivers needed. Because BRC assigns 90 drivers 

to standby, there is nothing further to investigate as it is an obvious linear 

relationship as the number of drivers needed extends beyond 90.  

 
Figure 5. Number of drivers called in sick vs. time of year 
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Figure 6. Correlation matrix 
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Figure 7. Time series visualization of the data 
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Figure 8. Seasonality trends for standby drivers needed 

 

Figure 9. Outliers in number of sick drivers 
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Figure 10. Emergency calls vs. standby drivers needed 

 

Figure 11. Standby drivers needed vs. additional drivers needed 

  



 

14 

 

2.3 Modeling 
The first step to modeling is to understand the problem in which we are trying to solve with ML. 

In this solution, we were tasked with creating a model that optimally predicts how many standby 

drivers will be needed on any given day. For this problem, a regression model will be the most 

appropriate as the target variable for the dataset is numerical and there seem to be trends that 

can be explained with linear models. The next step would be to decide on the metrics that will be 

used to explain success of the model. For this problem, we are looking to minimize the number 

of days where not enough drivers are waiting on standby, while minimizing the days where too 

many drivers are assigned to standby.  

2.3.1 Benchmark Models 

We created baseline models that establish a benchmark for the final predictive models to be 

measured against. The baseline models were the calculated mean of standby drivers needed by 

different periods (day, day of week, season, e.g.), and a simple linear regression model. The 

steps in completing this phase are detailed as follows: 

1. Mean models  

a. Calculate baseline mean of standby drivers needed (Figure 13); by day (month), 

day (week), and day (year) (Figure 14). 

b. Calculate the error metrics of baseline mean models. The output of these compu-

tations is shown in Figure 12.  

2. Linear regression model. Split data in test and train datasets, fit data to the model and 

calculate model error (Figure 15). R2 was an important metric to score in this model as it 

will be used in further regression analysis in more advanced models, so establishing a 

benchmark score was vital to the model building process. 

3. Compare benchmark models. Seen in Figure 16, the models are compared using the 

same metrics (RMSE, MSE, MAE, and MRE).  

From our creation and evaluation of benchmark models, it was clear that there is much room for 

improvement. The model with the best performance overall, meaning the lowest RMSE and MRE 

scores was the baseline mean model by year (Figure 16). The next step was to refine the results 

beyond these benchmark models.  
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Figure 12. Model evaluation of baseline means 
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Figure 13. Baseline mean 

 
Figure 14. Baseline mean of day/week/year 
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Figure 15. Linear regression model creation and evaluation 
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Figure 16. Evaluation between baseline means and linear regression models
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2.3.2 Final Prediction Model 

To train and select a final prediction model for the task at hand, it was necessary to first split the 

dataset into training and testing sets. Then, the potential models were fit using the separated 

training data and evaluated on the testing data. Next, steps were taken to fine tune the selected 

models’ hyperparameters to improve the models’ accuracy. The models were evaluated again, 

and a final model was selected based on its generalizability and minimized error.  

Validation. After an initial scan of ML technique options to solve this problem, two different re-

gression techniques were chosen: Bernoulli Naïve Bayes1 (BNB) and Support Vector Regres-

sion2 (SVR). These models were chosen from their initial performance on the data, as they were 

the only models to provide error scores that showed a relatively high performance with room to 

fine tune their parameters. As a first step in refining the models, a function was written that iter-

ates over a list of training set sizes, splits the dataset into test/train sets using each size, fit the 

model to the training data, and returns the best average model score after a simple two-fold 

cross-evaluation (VanderPlas, 2016) (Figure 17 & Figure 18). 

 
Figure 17. Initial r-score and best training set size, SVR 

 
Figure 18. Initial r-score and best training set size, BNB 

Tune Hyperparameters. To improve the prediction ability of the models it is necessary to manip-

ulate their hyperparameters. This was completed using what is known as a brute force cross-

validation technique (VanderPlas, 2016). In this technique and for each model, a list of parame-

ters with multiple variations is given. The algorithm will build and test a model for each combina-

tion of parameters in the given list. After each validation cycle, the best RMSE, R2, and model 

parameters are recorded for further analysis, where the model with the lowest RMSE and highest 

R2 is marked as the most accurate model.  

Evaluate and select. After model creation and fine tuning of hyperparameters, each model was 

analyzed on its performance and a final prediction model was selected. After an initial fitting of 

 

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html  
2 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html  
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the data to the BNB model, an r-score of 0.784 was recorded with a training set size of 66%; 

however, after fine tuning hyperparameters using sklearn.model_selection.gridsearchCV3, the 

model saw a rapid decline in performance (Figure 19). This could be attributed to a few reasons: 

1. The default parameters of sci-kit learn are optimized for many common cases of using 

the specific model and are more finely tuned than what even an expert data scientist could 

improve upon.  

2. Based on the results, the model is not experiencing overfitting (the event in which models 

get hyper-tuned to their training data to a level where they’re not able to generalize to 

new data). Evidently, the initial model was not overfitting the data originally due to the 

performance not increasing dramatically.  

3. The decisions for how training data was randomized could be causing fluctuations in 

model performance, as the initial splitting of data into test/train sets was performed 

against a randomized seed of the data.  

 

Figure 19. BNB model scores after fine tuning 

Finally, the SVR model was cycled after fine tuning/evaluation and selected as the best perform-

ing model due to its increased R2 and minimized RMSE after cross-validation. The final error 

metrics and optimal model parameters are shown in Figure 20, which are stored for the company 

for further use and refinement of the model.  

 
Figure 20. SVR model scores and parameters 

2.4 Deployment 
Now that a prediction model has been created, the next steps in the MS-TDSP are to validate 

the model’s performance with BRC to verify that the model provides a sufficient solution to the 

business’ problem and that satisfaction is at its highest, and to deploy the model for use across 

all business departments and teams, so that engineering teams can develop the model further 

and BI teams can make ad hoc queries using insights gained from the model. The latter two 

points will be addressed in the following sections.  

 

 
3 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html  
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2.4.1 Git Structure 

The source code of the prediction model should be accessible to all teams within the organiza-

tion. It is highly advised by the company that all code is placed in a private repository such as 

GitHub4 and organized for separate business purposes. A recommended structure of organizing 

a repository can be found at: https://github.com/Azure/Azure-TDSP-ProjectTemplate. Here, the 

company will find a template for MS-TDSP projects that can be cloned and used in their private 

repository.  

2.4.2 Dashboard Development 

Like its source code, it is important in the MS-TDSP methodology for the model to be accessible 

via a graphical user interface (GUI). A conceptual GUI in the form of a dashboard is recom-

mended by the company in Figure 21.  

 
Figure 21. Conceptual GUI model 

The proposed dashboard should be populated by extracted data from the DWH. Data is trans-

ferred back and forth between the model and the DWH. On the GUI, predictions, KPIs, and ad 

hoc queries that utilize the model are visualized with user inputs affecting the visualizations. 

Model error metrics and performance is visualized for users to understand the accuracy of its 

predictions. 

 

 
4 https://github.com/  
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3 Conclusion 
The overall task to build a model that minimizes the number of occurrences where there are not 

enough standby drivers, and simultaneously predict with minimal error how many drivers will be 

needed on any given day, was solved by this solution. The proposed approach of using MS-

TDSP as a methodology to structure and facilitate cooperation between teams within the organ-

ization is a proven structure for data science projects, and if the business approaches the task 

using this methodology, there will be guaranteed success.  

A predictive model was presented to BRC that will help to optimize business operations. This 

model, while already finely tuned to solve the specific task, has the opportunity to be improved 

as more data becomes available to it. A GUI should be developed that allows all business units 

to interact and generate reports based on findings from the model. A conceptual model of a GUI 

was presented that the company can use as a starting point in its development.  
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Appendix A. Source Code 

A-1 ModelEng_ForecastRescueDrivers_EDA.py 
#!/usr/bin/env python 

# coding: utf-8 

 

# # Exploratory Data Analysis 

#  

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import matplotlib.pyplot as plt 

import seaborn; seaborn.set() 

df = pd.read_csv('./use_case_2/sickness_table.csv', low_memory=False) 

 

# drop columns 

df = df.drop('Unnamed: 0', axis=1) 

# fix data types 

df['date'] = pd.to_datetime(df['date']) 

# check for duplicates 

df.drop_duplicates() 

df.info() 

df.head() 

 

# Prepare for time-series 

df = df.sort_values(by='date') 

# Check time intervals 

df['Time_Interval'] = df.date - df.date.shift(1) 

df[['date', 'Time_Interval']].head() 

print(f"{df['Time_Interval'].value_counts()}") 

df = df.drop('Time_Interval', axis=1) 

# check if no date appears more than once 

df.date.duplicated().sum() 

 

# check missing values 

print(df.isnull().sum().sum()) 

 

df.describe() 

 

# Visualize data  

fig, ax = plt.subplots(5, sharex=True, figsize=(12, 24)) 



 

 

 

ax[0].scatter(df['date'], df['n_sick']) 

ax[1].scatter(df['date'], df['calls']) 

ax[2].plot(df['date'], df['n_duty']) 

ax[3].plot(df['date'], df['sby_need']) 

ax[4].plot(df['date'], df['dafted']) 

ax[0].set_ylabel('drivers called sick on duty') 

ax[1].set_ylabel('emergency calls') 

ax[2].set_ylabel('drivers on duty available') 

ax[3].set_ylabel('standbys--activated on a given day') 

ax[4].set_ylabel('add. drivers needed--not enough standbys') 

fig.suptitle('Seasonal Features Data', fontsize=16, y=1.005, x=0.50) 

plt.tight_layout() 

fig.autofmt_xdate() 

plt.savefig('seasonal_features.png') 

plt.show() 

 

 

# ### What we can observe from visualization: 

#  

# - Potential outlier in *n_sick* around 2018, in *sby_need* and *dafted* 

# - Possible regression trends in *n_sick* and *calls* (these will be tested 
during creation of benchmark models) 

# - Time-series: seasonality patterns monthly (*sby_need* and *dafted*) 

 

# --- 

# Let's check for outliers in *n_sick* column: 

sns.boxplot(df['n_sick']) 

plt.savefig('n_sick_outliers.png') 

df[df['n_sick'] > 105] 

 

# From the plot it seemed that there were too many outliers above n=105, 
however, from the table we can see that this is just an upper limit of the 
data. 

#  

# Now let's check the outliers in sby_need: 

df[df['sby_need'] > 200] 

 

# It seems there are quite a bit of instances greater than two standard 
deviations above the mean, which could affect the data negatively. Let's remove 
those.  

df = df.loc[((df['sby_need'] >= 0) & (df['sby_need'] <= 200))] 

df.info() 



 

 

 

 

# ----- 

# Now let's check the seasonality of the data on when standy drivers are needed 

df['year'] = pd.DatetimeIndex(df['date']).year 

df['month'] = pd.DatetimeIndex(df['date']).month 

df['day'] = pd.DatetimeIndex(df['date']).day 

df['day_of_week'] = pd.DatetimeIndex(df['date']).dayofweek 

df['day_of_year'] = pd.DatetimeIndex(df['date']).dayofyear 

df['week_of_year'] = pd.DatetimeIndex(df['date']).weekofyear 

df['quarter'] = pd.DatetimeIndex(df['date']).quarter 

df['season'] = df.month%12 // 3 + 1 

 

df.to_csv('cleaned_data.csv') 

 

plt.figure(figsize=(18, 18)) 

 

i = 0  

cols = ['year', 'month', 'day', 'week_of_year', 'day_of_week', 'day_of_year', 
'quarter', 'season'] 

for col in cols: 

    i+=1 

    plt.subplot(4, 2, i) 

    ax = sns.lineplot(x=col, y='sby_need', marker='o', data=df) 

plt.savefig('time_series_plot.png') 

plt.show() 

 

 

# ----- 

# Now let's explore the relationships between some variables by looking at the 
correlation matrix 

 

df.corr() 

 

# This shows a few positive correlations worth visualizing: 

#  

# - Number of sick drivers vs. month/day/week/season 

# - Number of emergency calls vs. number of standby drivers needed 

# - Number of standby drivers needed vs. number of additional drivers needed 

 

# Number of sick drivers vs. month/day/week/season 

plt.figure(figsize=(12, 12)) 



 

 

 

 

i = 0  

cols = ['month', 'day', 'week_of_year', 'season'] 

for col in cols: 

    i+=1 

    plt.subplot(2, 2, i) 

    ax = sns.lineplot(x=col, y='n_sick', marker='o', data=df) 

plt.savefig('sick_vs_season.png') 

plt.show() 

 

# Number of emergency calls vs. number of standby drivers needed 

plt.figure(figsize=(10,10)) 

 

# Remove instances where 0 drivers are needed 

only_need = df.where(df['sby_need'] > 0) 

 

fig, ax = plt.subplots() 

ax.scatter(only_need['sby_need'], only_need['calls']) 

ax.set_xlabel('sby-need') 

ax.set_ylabel('calls') 

plt.savefig('standby_need_vs_calls.png') 

plt.show() 

 

# Number of standby drivers needed vs. number of additional drivers needed 

plt.figure(figsize=(10,10)) 

 

fig, ax = plt.subplots() 

ax.scatter(df['sby_need'], df['dafted']) 

ax.set_xlabel('sby-need') 

ax.set_ylabel('add. need') 

plt.savefig('sby_need_vs_add.png') 

plt.show() 

 

A-2 ModelEng_ForecastRescueDrivers_Baseline-Model.py 
#!/usr/bin/env python 

# coding: utf-8 

 

# # Baseline Model 

# ------ 



 

 

 

#  

# - Calculate driver need mean by day, day of week, season 

# - Establish a simple linear regression model 

# - Validate performance of the models to establish a benchmark 

import pandas as pd 

import numpy as np 

import seaborn as sn 

import datetime 

import sklearn 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import max_error 

 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn; seaborn.set() 

df = pd.read_csv('./cleaned_data.csv', low_memory=False) 

df = df.drop(['Unnamed: 0'], axis=1) 

 

# Calculate mean  

pd.set_option('mode.chained_assignment',None) 

mean = np.round(df['sby_need'].mean(), 5) 

df['bl_mean'] = mean 

df.head() 

 

# Calculate mean by day (month) 

x = 
np.ceil(df.groupby('day')['sby_need'].mean()).to_frame('bl_mean_day_of_month'
).reset_index() 

df = pd.merge(x, df, on='day') 

 

# Calculate mean by day (week) 

x = 
np.ceil(df.groupby('day_of_week')['sby_need'].mean()).to_frame('bl_mean_day_o
f_week').reset_index() 

df = pd.merge(x, df, on='day_of_week') 

 

# Calculate mean by day (year) 



 

 

 

x = 
np.ceil(df.groupby('day_of_year')['sby_need'].mean()).to_frame('bl_mean_day_o
f_year').reset_index() 

df = pd.merge(x, df, on='day_of_year') 

 

df.head() 

 

# Define a function to calculate error metrics for baseline means 

def metrics(y, y_hat, title='baseline mean', save_or_print='just_print', tar-
get_var='sby_need'): 

    mse = np.round(mean_squared_error(y, y_hat), 5) 

    rmse = np.round(np.sqrt(mean_squared_error(y, y_hat)), 5) 

    mae = np.round(mean_absolute_error(y, y_hat), 5) 

    max_r = np.round(max_error(y, y_hat), 5) 

     

    print('=======') 

    print(f'{title} (n={len(y)})') 

    print('-------') 

    print(f'| RMSE | {rmse} ') 

    print(f'| MSE  | {mse}') 

    print(f'| MAE  | {mae}') 

    print(f'| Max  | {max_r}') 

    print('\n') 

     

    if save_or_print is not 'just_print': 

        with open('baseline_model_error_metrics.csv', 'a+') as file: 

            date = datetime.datetime.now() 

            row = f'\n{title}, {rmse}, {mse}, {mae}, {max_r}, {len(y)}, {tar-
get_var}, {date}' 

            file.write(row) 

     

    return rmse, max_r        

 

 

bl_mean_rmse, bl_mean_max = metrics(df['bl_mean'], df['sby_need'], 'Baseline 
Mean', 'save') 

bl_mean_year_rmse, bl_mean_year_max = metrics(df['bl_mean_day_of_year'], 
df['sby_need'], 'Baseline Mean - day/year', 'save') 

bl_mean_month_rmse, bl_mean_month_max = metrics(df['bl_mean_day_of_month'], 
df['sby_need'], 'Baseline Mean - day/month', 'save') 

bl_mean_week_rmse, bl_mean_week_max = metrics(df['bl_mean_day_of_week'], 
df['sby_need'], 'Baseline Mean - day/week', 'save') 

 



 

 

 

 

# # Linear Regression Baseline Model 

# ---- 

#  

# - Split data into test-train sets 

# - Fit data to model 

# - Evaluate model performance 

 

# Split data into test/train sets 

x1 = pd.get_dummies(df[['day_of_year', 'day', 'day_of_week', 'year', 'month', 
'season']].astype(str)) 

X1, X2, y1, y2 = train_test_split(x1, df['sby_need'], random_state=5, 
train_size=0.7) 

 

# Fit data to model 

from sklearn.linear_model import Ridge 

ridge_model = Ridge(alpha=20) 

ridge_model.fit(X1, y1) 

y_hat = ridge_model.predict(X2) 

print(ridge_model.score(X2, y2)) 

 

# Evaluate model performance 

lin_reg_bl_rmse, lin_reg_bl_max = metrics(y2, y_hat, 'Linear Reg.', 
'just_print') 

 

 

# ## Compare Benchmark Models 

 

results_rmse = [lin_reg_bl_rmse, bl_mean_week_rmse, bl_mean_month_rmse, 
bl_mean_year_rmse, bl_mean_rmse] 

results_max = [lin_reg_bl_max, bl_mean_week_max, \ 

               bl_mean_month_max, bl_mean_year_max, bl_mean_max] 

print(f'Benchmark Results') 

print('========') 

print(f'LinReg: RMSE = {lin_reg_bl_rmse}, Max = {lin_reg_bl_max}') 

print(f'BL-mean: RMSE {bl_mean_rmse}, Max = {bl_mean_max}') 

print(f'BL-mean-week: RMSE = {bl_mean_week_rmse}, Max = {bl_mean_week_max}') 

print(f'BL-mean-month: RMSE = {bl_mean_month_rmse}, Max = 
{bl_mean_month_max}') 

print(f'BL-mean-year: RMSE = {bl_mean_year_rmse}, Max = {bl_mean_year_max}\n') 

     

print(f'*Best RMSE score* : {min(results_rmse)}') 



 

 

 

print(f'*Best Max Error score* : {min(results_max)}') 

 

 

# According to the initial results, the Baseline Mean - Days/Year model out 
performs all benchmarks. 

 

A-3 ModelEng_ForecastRescueDrivers_Prediction-Model.py 
#!/usr/bin/env python 

# coding: utf-8 

 

# # Prediction Model 

# ---- 

#  

# - Split data into test/train sets 

# - Fit data to potential models: Support Vector Regression & Bernoulli Naive 
Bayes 

# - Evaluate performance of models using cross-validation 

# - Tune hyperparameters 

# - Evaluate model performance again 

# - Select best model for deployment 

 

import pandas as pd 

import numpy as np 

import seaborn as sn 

import datetime 

import sklearn 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import max_error 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import r2_score 

from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import RandomizedSearchCV 

 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn; seaborn.set() 

df = pd.read_csv('./cleaned_data.csv', low_memory=False) 



 

 

 

df = df.drop(['Unnamed: 0'], axis=1) 

 

# Split data into train/test sets 

# 

# Make feature matrix 

x1 = pd.get_dummies(df[['day_of_year', 'day', 'day_of_week', 'year', 'month', 
'season']].astype(str)) 

# Merge sby_need with matrix 

x1['sby_need'] = df['sby_need'] 

# Split into train/test 

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=0.8) 

 

# Make validation sets 

Xval, Xval2, Yval, Yval2 = train_test_split(x1, x1['sby_need'], 
train_size=0.5) 

 

 

# ### Model validation 

# --- 

#  

# - In order to verify optimal size of training set data, a function is used 
to iterate through a list of sizes, split the data using each size, and return 
the best average model score after two-fold cross-validation. 

 

# Support vector regression 

from sklearn import svm 

 

r2_best = 0 

trainset_size = 0 

 

for i in np.arange(0.5, 0.98, 0.02): 

 

    # Split into train/test 

    X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=i, ran-
dom_state=42) 

     

    svr_model = svm.SVR(gamma='auto').fit(X1, y1) 

    y_hat_svr = svr_model.predict(X2) 

     

    svr_model_val1 = svm.SVR(gamma='auto').fit(Xval, Yval) 

    svr_model_val2 = svm.SVR(gamma='auto').fit(Xval2, Yval2) 

    yhat_svrm1 = svr_model_val1.predict(Xval2) 



 

 

 

    yhat_svrm2 = svr_model_val2.predict(Xval) 

     

    r2 = svr_model.score(X2, y2) 

    r2_test = svr_model.score(X1, y1) 

    r2_val1 = svr_model_val1.score(Xval2, Yval2) 

    r2_val2 = svr_model_val2.score(Xval, Yval) 

    r2_mean = np.mean([r2, r2_test, r2_val1, r2_val2]) 

     

    if r2_mean > r2_best: 

        r2_best = r2 

        trainset_size = i 

         

print(f'Best R^2            : {r2_best}') 

print(f'Best Train-set pct. : {np.round(trainset_size, 2)}') 

 

svr = {'best_r2': r2_best, 'best_train_size': np.round(trainset_size, 2)} 

 

# Fit data to model - bernoulli naive bayes 

from sklearn.naive_bayes import BernoulliNB 

 

r2_best = 0 

trainset_size = 0 

 

for i in np.arange(0.5, 0.98, 0.02): 

 

    # Split into train/test 

    X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], train_size=i, ran-
dom_state=42) 

     

    bnb_model = BernoulliNB(class_prior=None).fit(X1, y1) 

    y_hat_bnb = bnb_model.predict(X2) 

 

    bnb_val1 = BernoulliNB().fit(Xval, Yval) 

    bnb_val2 = BernoulliNB().fit(Xval2, Yval2) 

    y_hat_bnb_val1 = bnb_val1.predict(Xval2) 

    y_hat_bnb_val2 = bnb_val2.predict(Xval) 

 

    r2 = bnb_model.score(X2, y2) 

    r2_test = bnb_model.score(X1, y1) 

    r2_val1 = bnb_val1.score(Xval2, Yval2) 



 

 

 

    r2_val2 = bnb_val2.score(Xval, Yval) 

    r2_mean = np.mean([r2, r2_test, r2_val1, r2_val2]) 

     

    if r2_mean > r2_best: 

        r2_best = r2_mean 

        trainset_size = i 

         

print(f'Best R^2            : {r2_best}') 

print(f'Best Train-set pct. : {np.round(trainset_size, 2)}') 

 

bnb = {'best_r2': r2_best, 'best_train_size': np.round(trainset_size, 2)} 

 

 

# ## Tune Hyperparameters 

# ---- 

#  

# - Using brute force cross-validation to evaluate parameter performance, each 
model will have a list of the parameters used for each validation cycle along 
with the best score results. 

# - The best scores from each model tuning will be printed and automatically 
selected. 

 

# #### Bernoulli Naive Bayes model 

 

from sklearn.model_selection import train_test_split, RandomizedSearchCV 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.metrics import r2_score, mean_squared_error 

 

# Split into train/test 

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], 
train_size=bnb['best_train_size'], random_state=42) 

 

param_grid = { 

    'alpha': [0.1, 0.5, 1.0, 1.5], 

    'fit_prior': [True, False], 

    'binarize': [0.0, 0.5, 1.0] 

} 

 

scoring = {'R^2': 'r2', 'MSE': 'neg_mean_squared_error'} 

search = RandomizedSearchCV(bnb_model, param_grid, cv=5, n_iter=10, scor-
ing=scoring, refit='R^2').fit(X1, y1) 

 



 

 

 

print("Best R^2 score:", search.best_score_) 

 

best_r2_score = -float('inf') 

best_mse_score = float('inf') 

best_model = None 

 

for mean_r2, mean_mse, params in zip(search.cv_results_['mean_test_R^2'], 
search.cv_results_['mean_test_MSE'], search.cv_results_['params']): 

    if mean_r2 > best_r2_score: 

        best_r2_score = mean_r2 

        best_mse_score = mean_mse 

        best_model = params 

    elif mean_r2 == best_r2_score and mean_mse < best_mse_score: 

        best_mse_score = mean_mse 

        best_model = params 

 

print("Best R^2 score:", best_r2_score) 

print("Best MSE:", best_mse_score) 

print("Best model:", best_model) 

 

 

# The models performance is lower after tuning hyper-parameters. This suggests 
that: 

#  

# 1. The default parameters of Scikit-learn are more finely-tuned than what a 
novice data scientist could initially create. 

# 2. The model is not experiencing overfitting, as the performance on initial 
model is not overly higher than the fine-tuned version. 

# 3. The randomization of training data could be what is causing model perfro-
mance to fluctuate 

 

# #### Support Vector Regression model 

 

# Split into train/test 

X1, X2, y1, y2 = train_test_split(x1, x1['sby_need'], 
train_size=svr['best_train_size'], random_state=42) 

 

param_grid = { 

    'C': [0.1, 1, 10], 

    'epsilon': [0.01, 0.1, 1], 

    'kernel': ['linear', 'rbf'], 

    'gamma': ['scale', 'auto'], 



 

 

 

    'shrinking': [True], 

} 

scoring = {'R^2': 'r2', 'MSE': 'neg_mean_squared_error'} 

search = GridSearchCV(svr_model, param_grid, scoring=scoring, refit='R^2', 
cv=5).fit(X1, y1) 

 

best_svr = search.best_estimator_ 

 

y_pred = best_svr.predict(X2) 

r2 = r2_score(y2, y_pred) 

mse = mean_squared_error(y2, y_pred) 

 

print("Best R^2 score:", r2) 

print("Best MSE:", mse) 

print("Best parameters:", search.best_params_) 

 

def select_best_model(models_dict): 

    best_r2_score = -float('inf')  

    best_mse_score = float('inf')   

    best_model_params = None 

 

    for (r2_score, mse_score), model_params in models_dict.items(): 

        if mse_score < best_mse_score or (mse_score == best_mse_score and 
r2_score > best_r2_score): 

            best_r2_score = r2_score 

            best_mse_score = mse_score 

            best_model_params = model_params 

 

    return best_model_params, best_r2_score, best_mse_score 

 

 

score_models_dict = {} 

 

# Iterate over all models in grid search results 

for mean_r2, mean_mse, params in zip(search.cv_results_['mean_test_R^2'], 
search.cv_results_['mean_test_MSE'], search.cv_results_['params']): 

    score_models_dict[(mean_r2, -mean_mse)] = params 

 

print("\nDictionary of R^2 scores, MSE scores, and corresponding models:") 

for (r2_score, mse_score), model_params in score_models_dict.items(): 

    print("R^2 score:", r2_score) 



 

 

 

    print("MSE score:", mse_score) 

    print("Model parameters:", model_params) 

    print("--------------------") 

 

best_params, best_r2, best_mse = select_best_model(score_models_dict) 

 

print("\nBest model parameters:", best_params) 

print("Best R^2 score:", best_r2) 

print("Best MSE score:", best_mse) 

 

  



 

 

 

Appendix B. Jupyter Notebooks 

B-1 Exploratory Data Analysis 

 
 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 
  



 

 

 

B-2 Baseline Model 

 
 

 



 

 

 

 
 

 

 



 

 

 

 
 

 

 



 

 

 

 
  

Benchmark Results 
======== 
LinReg: RMSE = 44.31846, Max = 167.70059 
BL­mean: RMSE 43.5718, Max = 181.43318 
BL­mean­week: RMSE = 43.35615, Max = 182.0 
BL­mean­month: RMSE = 42.74962, Max = 180.0 
BL­mean­year: RMSE = 33.73285, Max = 141.0 
 
*Best RMSE score* : 33.73285 
*Best Max Error score* : 141.0 

print(f'LinReg: RMSE = {lin_reg_bl_rmse}, Max = {lin_reg_bl_max}') 
print(f'BL­mean: RMSE {bl_mean_rmse}, Max = {bl_mean_max}') 
print(f'BL­mean­week: RMSE = {bl_mean_week_rmse}, Max = {bl_mean_week_max}') 
print(f'BL­mean­month: RMSE = {bl_mean_month_rmse}, Max = {bl_mean_month_max}') 
print(f'BL­mean­year: RMSE = {bl_mean_year_rmse}, Max = {bl_mean_year_max}\n') 
     
print(f'*Best RMSE score* : {min(results_rmse)}') 
print(f'*Best Max Error score* : {min(results_max)}') 



 

 

 

B-3 Prediction Model 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

Best R^2 score: 0.9999999535634789 
Best MSE: 7.872045324837176e­05 
Best parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'linear', 'shri
nking': True} 
Dictionary of R^2 scores, MSE scores, and corresponding models: 
R^2 score: 0.9999999598546738 
MSE score: 7.743527524104955e­05 
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'linear', 'shrin
king': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.04571005143855864 
MSE score: 1911.7009623166643 
Model parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrink
ing': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.04800308663814628 
MSE score: 1907.6581351291327 
Model parameters: {'C': 0.1, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinki
ng': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9999956869757741 
MSE score: 0.008303550524077632 
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'linear', 'shrink
ing': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.047258474712806586 
MSE score: 1908.6311988305708 
Model parameters: {'C': 0.1, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinki
ng': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.04952557765021202 
MSE score: 1904.6362925620194 
Model parameters: {'C': 0.1, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9995617151084139 
MSE score: 0.8441344048017452 
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'linear', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.062269658421828265 
MSE score: 1878.8455090174475 
Model parameters: {'C': 0.1, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.06427348825334182 
MSE score: 1875.3385613974108 
Model parameters: {'C': 0.1, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.8372435978142292 
MSE score: 333.686435817931 
Model parameters: {'C': 1, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.718968038316113 
MSE score: 571.2616824252777 
Model parameters: {'C': 1, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.8374365928527591 
MSE score: 333.3063220493743 
Model parameters: {'C': 1, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 



 

 

 

 
 

R^2 score: 0.7188120239564485 
MSE score: 571.6731313808535 
Model parameters: {'C': 1, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.8391010621291095 
MSE score: 329.84998274868286 
Model parameters: {'C': 1, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinking': 
True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.7199407258196721 
MSE score: 569.2082298309839 
Model parameters: {'C': 1, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinking': 
True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9988863324366494 
MSE score: 2.3761025137285294 
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'shrinki
ng': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9975393902709314 
MSE score: 5.284376039466548 
Model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9988792045127851 
MSE score: 2.3874817570292985 
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9975091672560007 
MSE score: 5.3462195250408735 
Model parameters: {'C': 10, 'epsilon': 0.1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.9984749449128648 
MSE score: 3.1859373982539414 
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'scale', 'kernel': 'rbf', 'shrinkin
g': True} 
­­­­­­­­­­­­­­­­­­­­ 
R^2 score: 0.996825652151134 
MSE score: 6.699423817466172 
Model parameters: {'C': 10, 'epsilon': 1, 'gamma': 'auto', 'kernel': 'rbf', 'shrinking': 
True} 
­­­­­­­­­­­­­­­­­­­­ 
 
Best model parameters: {'C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'linear', 
'shrinking': True} 
Best R^2 score: 0.9999999598546738 
Best MSE score: 7.743527524104955e­05 
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site­packages/sklearn/mo
del_selection/_search.py:813: DeprecationWarning: The default of the `iid` parameter wil
l change from True to False in version 0.22 and will be removed in 0.24. This will chang
e numeric results when test­set sizes are unequal. 
  DeprecationWarning) 


