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Abstract  

Purpose. To highlight and formalize the interconnected relationships between cog-

nitive modeling (CM), software project management (SPM), and behavioral and 

cognitive science. 

Value. The study builds on the existing research efforts of SPM modeling by ex-

tracting an interdisciplinary cognitive approach and applying it to preexisting con-

ceptual models.  

Methods. Systematic Literature Review (SLR), text mining, clustering 

Key findings. CM techniques have the capacity to reproduce a wide scope of cog-

nitive processes, many of which are useful to take into consideration in the model-

ing and simulation of human-computer interactive behavior. While there exists sep-

arated bodies of research within each of the study domains, there is an incongruity 

amongst the modeling community between the semantic distinctions of cognitive 

and computational modeling.  

Conclusion. There is a strong relationship between CM, SPM, HCI, and cognitive 

science that is under-represented in current cognitive science and PM research. The 

implementation of cognitive theories into models that replicate SPM processes is a 

key area of future cognitive and behavioral science studies. 

Keywords: cognitive modeling, software project management, behavioral science, 

cognitive science, human-computer interaction 
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1 Introduction 

Guided by research in the multidisciplinary field of cognitive science, experts have 

been able to apply theoretical conclusions to the optimization of tasks within the 

professional and academic fields both; and in doing so, have advanced the under-

standing of computational and cognitive psychology beyond the theoretical and 

into the applied science realm. The comprehension of the dynamic aspects of human 

cognition and behavior realized in the management of software projects and pro-

cesses is one of the worthwhile applications of this knowledge. This paper will act 

as an exploration into the interconnection between the topics of cognitive modeling 

(CM), cognitive and behavioral psychology, and software project management 

(SPM).  

The study of cognition provides many challenges; human cognition being a multi-

dimensional system with both complex and simple, deliberate and automatic, fast 

and slow mental processing. By synthesizing various theoretical approaches and 

mechanisms of cognition into proposed unified structures, called cognitive archi-

tectures, computational cognitive models allow for the methodical and thoroughly 

testable reproductions of human cognitive processes. Starting from fundamental 

conceptual models of cognition, interrelated cognitive mechanisms can be modeled 

and applied to specific tasks and the behavioral outputs of the tasks can be tested, 

verified, and fed back into the conceptual understanding of the models.  

Supplemental to CM research, cognitive psychology studies the core processes be-

hind language and knowledge formation, attention, decision-making, problem-

solving, memory, and learning, to understand how individuals process and per-

ceive stimuli in their environment, utilize and acquire information, and how they 

think, reason, and respond to inputs that influence behavior. The disciplines of neu-

roscience, neuropsychology, and computer science, i.e., computational psychology, 

are all included in CM to provide an understanding of how cognitive mechanisms 

affect human action.  

Behavioral psychology complements cognitive psychology by exploring human be-

havior as an external, observable output. In perspective to the study of internal pro-

cesses, behavioral psychology relies on the social and external aspects. This research 

scope will examine behavioral psychology from the lens of human-computer inter-

action (HCI), which focuses on the behavior and cognition that results from hu-

mans’ interactions and collaborations with digital tools to perform tasks and com-

plete goals. A narrower lens in behavioral psychology will also be employed in this 

research scope, one that observes the patterns of behavior stemming from common 

biases and heuristics, specifically in the context of SPM. 
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Outside of cognitive and behavioral sciences, software project managers play a vital 

role in controlling and delivering software projects. SPM contains processes for 

managing tasks throughout the software development life cycle (SDLC) which in-

cludes design, coding, testing, and deployment. Specific processes in SPM are based 

on communication and resource control: planning, scheduling, budgeting, risk 

management, and quality assurance. The role of a software project manager is in-

tertwined with cognitive science in terms of managers having to utilize complex 

cognition for decision-making, problem-solving, and information management, 

while behavioral psychology helps to explain some of the biases and heuristics com-

mon to management behavior. Modeling SPM processes allows an organization to 

document and analyze any bottlenecks or inefficiencies in the business’ workflow 

to streamline performance. Process models, similar in structure to cognitive models, 

are visual representations of the flow of various activities and synchronous ex-

changes between employees with inversely defined roles within an organization; 

these will also be examined using the predefined lenses and scope to investigate 

their relation to cognitive models.  

In the remainder of this chapter, the goal will be to find the cohesion between topics 

shown in Figure 1 by forming research questions that will explain their inter-con-

nections. Figure 2 shows which topics each RQ includes. To combine these topics in 

a fluid and all-encompassing approach, a systematic literature review (SLR) was 

completed. Extracted data from comprehensive literature searches were synthe-

sized and analyzed to provide a bridge of understanding between these significant 

research fields.  

 

Figure 1. Research domains 

1.1 Target Audience 

A multi-disciplinary approach will support findings from each area of focus in un-

discovered ways. For researchers specifically examining cognition, realizing the 

cognitive aspects of SPM behavior helps to further develop cognitive theories, and 
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likewise for researchers of SPM. While this study is directed to researchers looking 

to bridge the knowledge gap between software development, project management 

(PM), cognitive science, and HCI, it may also have practical implications for busi-

ness owners and project managers who want to optimize their approach to projects 

by introducing and considering cognitive science in their business processes.  

1.2 Objectives 

The following research questions were used to structure and guide thematic con-

cepts of the SLR. 

RQ1. Is human cognition reproducible using CM methods? 

RQ1.1. What is the scope of cognition that is reproducible? 

Representing cognition in a computational and symbolic way allows re-

searchers to test and refine cognitive theories with observable outcomes. To 

advance the comprehension and guide future research in cognitive science, 

it is crucial to grasp the extent to which CM techniques encapsulate human 

cognitive processes.  

RQ2. Is HCI behavior replicable using CM methods? 

Measuring the precision of models that attempt to explain psychological phe-

nomena requires human behavior as a target variable to predict or assess. 

While cognitive models focus almost exclusively on cognitive processes, 

there also exists user models that target individual behavior. It is necessary 

for researchers to understand the feasibilities for which CM can be incorpo-

rated into HCI behavioral models. 

RQ3. What are the preconditions of applying CM techniques to SPM? 

RQ3.1. What distinguishes SPM from other project management fields? 

SPM entails both automatic cognitive processes such as attention, memory, 

and perception, and complex cognitive processes such as decision-making, 

problem solving, and knowledge management. Tasks within the SPM field 

require a specific scope of automatic and complex cognitive processes which 

has not been the focus of many research studies. It is important to first un-

derstand the scope of behavior and cognition that is characteristic of SPM 

tasks to then synthesize how CM techniques can benefit the completion and 

analysis of these tasks.  

RQ4. What are the thresholds for SPM to be modeled in relation to the precon-

ditions identified by current cognitive science research?  

RQ4.1. What elements of preexisting models of project management can 

be applied to model SPM? 
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RQ4.2. What are the factors that lead to accurate or inaccurate models of 

SPM? 

Research has suggested that CM techniques can benefit the modeling of a 

variety of tasks in different domains. Likewise, process and network models 

have been implemented in project management research, but without the in-

clusion of cognitive and behavioral preconditions such as biases and heuris-

tics or proposed thresholds of human cognitive abilities. An important met-

ric in any kind of modeling research, apart from the precision and accuracy 

of models to describe the phenomena in which they are modeling, is the va-

lidity and testability of the models developed.  

A SLR in the scope of the above topics has the expectation of bridging the gap of 

knowledge and research that currently exists between SPM and cognitive science, 

to supply a benchmark of understanding that can be further scaled by supporting 

research. 

 

Figure 2. Research domains connected by RQs 

1.3 Scope and Constraints 

By expanding the research scope of CM into the SPM field, cognitive science re-

searchers have the possibility to study cognitive processes as they appear in the 

context of software development and potentially gain new insights on biases and 

behaviors related to the specific area of focus; while researchers in the field of SPM 

may uncover insights about human cognition that could help recognize underlying 
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processes, motivations, and behaviors. Linking the fields of SPM and cognitive sci-

ence adds value in each respective area by applying knowledge and conclusions 

from multiple disciplines into one conceptualized approach. Although each re-

search domain has corresponding themes, it is necessary to refine the overall scope 

to sharpen the focus of the SLR. Accordingly, there are a few areas that need to be 

precisely defined. 

Cognition 

When researching cognition, it is essential to provide a comprehensive review of 

the various cognitive mechanisms and its errors and variables both. Cognitive sci-

ence researchers must decide how comprehensively to cover the entirety of the pro-

cesses responsible for knowledge acquisition, perception, learning and memory, 

among others, or to apply a narrow-focused scope and examine one cognitive fea-

ture exclusively. There are advantages and disadvantages to both approaches: the 

main advantage of applying research resources to one or a few cognitive aspects is 

that it provides a thorough examination of the specific set of processes as they relate 

to the whole cognitive system; however, it must be considered that cognition is a 

complex and multi-layered entity that controls different features in a modular and 

dynamic way, making it equally important to understand both the behavioral ef-

fects of one cognitive process as it is to understand how the whole of cognition af-

fects behavior. 

In this research context, the scope and definition of cognition will be classified as 

the human mechanisms that control the processes of decision-making, memory for-

mation and recall, learning, attention, and problem-solving. While the extent of un-

derstanding cognition is not limited to these processes, they will be the main focuses 

as they have a direct association with the conceptual knowledge of the SPM field.  

Project Management 

Considering the limited focused research on SPM in the domain of CM and HCI, at 

times it may be necessary to compare tasks between different fields of project man-

agement, not just in the software sector. Although the specific focus is on SPM, the 

lack of specified research in this domain and the similarities between cognitive pro-

cesses in general PM tasks may be identified. This will be reflected in the inclu-

sion/exclusion criteria of the SLR, as many cognitive aspects (such as biases and 

heuristics) are prevalent in managerial decision-making that do not need to be di-

rectly attached to either PM or SPM behavior. Finally, the differences of PM and 

SPM fields will be further examined in the SLR to add further knowledge to the 

underlying cognitive processes.  
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Human-Computer Interaction 

While CM has been used to simulate many components of HCI,1 SPM processes 

(e.g., visualization of project dashboards) involve the interaction between humans 

and user interfaces (UIs). In the chosen scope of research, HCI is a critical compo-

nent to consider – but this study will only the include relevant aspects of HCI to 

SPM and CM without analyzing the vast collection of HCI research. The main dis-

advantage of focusing on HCI to study cognitive processes is that much of the indi-

vidual cognitive processing takes place outside of the computer interaction aspects 

– that is, in HCI research individuals are often seen as the ‘agents’ who are interact-

ing with UIs and their behavior is studied accordingly – but this study will approach 

it from the other way around, focusing on the internal processing that results from 

cognitive agents and their interactions with digital interfaces. Thus, the usefulness of 

CM as a technique to replicate and measure these behavioral aspects will be suffi-

ciently highlighted.  

Affect 

SPM processes can be defined with much subjectivity; however, this study does not 

include observations of emotions or feelings involved in SPM processes or cognitive 

states, but rather examines the processing time for individuals to carry out these 

processes. Put another way, the research objectives are limited to studying the au-

tomatic behavior necessary for performing SPM processes or the behaviors result-

ing from the combination of cognitive structures that facilitate individuals to per-

form SPM processes. Left out of the scope is the coverage of emotions, feelings, be-

liefs, and mental states that are studied in other sections of psychology.  

Other Related Topics 

Other topics found frequently throughout the SLR process, that are closely related 

to the research topics but were intentionally excluded from the selected scope, are 

as follows. 

• Perception, acceptance, or perceived usefulness of PM technology 

• Cultural, emotional, or personalities theories in PM 

• Perceived project complexity 

• Neural bases of cognition  

• Implementing cognitive models (e.g., which coding languages used to de-

velop models, building models into network distributions, etc.) 

• Affective computing  

• Team cognition  

 

1 (Beimel & Kedmi-Shahar, 2019) 
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Furthermore, the field of cognitive engineering, along with HCI, is concerned with 

the design of UIs that best support users within task constraints while focusing on 

aspects of cognitive psychology that aid in these designs. This study is not as much 

concerned with designs, or even incorporating cognitive theories into new designs 

as cognitive engineering posits, but more about the understanding of how to effec-

tively work with tools that are already existing, and how to approach these tools 

(through modeling) in methods considerate of the effects of machines on human 

factors, and vice versa. By similar means, studies about design paradigms focused 

on building IT systems (e.g., systems engineering) were excluded from the full 

study. 

1.4 Assumptions 

There are several key assumptions that this study will undertake to establish a com-

prehensive view of the research topics. First, CM, although it can be in of itself de-

fined by models that reproduce cognitive processes both computationally and sym-

bolically, will include cognitive architectures in its definition. Accordingly, certain 

research questions (RQ) that reference ‘CM techniques’ also refer to the use of cog-

nitive architectures as one of its techniques; albeit, cognitive architectures will re-

ceive their respective attention in both the Cognitive Modeling and Discussion sec-

tions. Secondly, the study of human behavior and performance will be constrained 

to HCI behavior. This decision is twofold: only observing digital and online SPM 

activities allows for a more precise focus on the cognitive processes that software 

project managers enact in activities such as planning, monitoring, and decision-

making, and it also allows the research scope to separate these behaviors from the 

social and environmental variables that affect project managers’ cognitive pro-

cessing.  

1.5 Related Studies 

While the scope of CM covers many fields, little attention has been supplied specif-

ically to the processes of SPM or have they researched in-depth how CM can be 

applied to understand and efficiently model the characteristics of SPM processes. 

Valiente combined software engineering and IT Service Management (ITSM) into 

UML diagram conceptual models using ontology-based rules as a modeling lan-

guage;2 both Case & Stylios and Tlili & Chikhi, in separate studies, used FCM to 

 

2 (Valiente, 2012) 
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model project management and SPM risk, respectively;3,4 Gruhn & Laue studied the 

effects of cognitive complexity on business process models;5 Jarecki et al. proposed 

a framework for building cognitive process models that account for information ab-

straction with behavioral predictions;6 Chernova et al. took a cognitive approach to 

SPM, using cognitive mapping to describe IT project control tasks;7 and Mair et al. 

explored the relationship between cognitive processes and personality of software 

project managers, only to find that modeling problem-solving and estimation is a 

narrowly-focused task and cannot be generalized to other contexts.8  

Systematic Reviews 

Considering the lack of published research, there is vast potential for a comprehen-

sive SLR that includes the subjects of CM and SPM within its scope. No knowledge 

of an existing SLR in the precise domain of these defined fields has been found, but 

there are several formal reviews that include at least one of the topics of interest.  

The relationship between cognitive biases and software engineering (SE) have been 

reviewed in multiple studies: Mohanani et al. performed a mapping study of the 

systematic errors that are introduced by cognitive biases in SE research;9 Anu et al. 

examined how requirements engineering and gathering – a human-centric SE activ-

ity – is prone to cognitive error;10 and Fleischmann et al. reviewed the relation of 

human cognition and decision-making in information systems (IS) research, observ-

ing cognitive biases as the mitigating variable.11  

Cognition and PM have been linked together in systematic reviews: Fernandes & 

Vils examined these topics with the intention to further the understanding of cog-

nition;12 and Stingl conducted a systematic review of behavioral decision making in 

PM that argued for theoretical homogeneity.  

Cognitive Psychology has been included in these reviews as well: Mair et al. com-

pleted an SLR on the fundamentals and cognitive processes of problem-solving 

 

3 (Case & Stylios, 2016) 
4 (Tlili & Chikhi, 2021) 
5 (Gruhn & Laue, 2006) 
6 (Jarecki et al., 2020) 
7 (Chernova et al., 2022) 
8 (Mair et al., 2012) 
9 (Mohanani et al., 2018) 
10 (Anu et al., 2018) 
11 (Fleischmann et al., 2014) 
12 (Fernandes & Vils, 2022) 
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through the lens of cognitive psychology;13 Koch et al. examined the affective, be-

havioral, and cognitive outcomes of agile PM in a SLR and meta-analysis;14 and 

Zugal reviewed the state of research between cognitive psychology and Business 

Process Models (BPMs).15 While these studies are all useful for developing a bench-

mark of research, they are lacking a specific focus either on the fields of software, 

PM, or cognitive science.  

1.6 Document Structure 

The remainder of this paper will be structured as so: first, the methods and proce-

dures for carrying out the SLR will be detailed in Research Design; then, a back-

ground of related topics and their relevance and rationale to be synthesized in the 

study are labeled in Cognitive Modeling; next, findings from selected studies, data 

extraction and synthesis, and cluster analysis will be presented in Results; finally, a 

breakdown of the findings will be discussed in the Discussion, followed by a critical 

reflection of the study and future research directions in the Conclusion. 

 

13 (Mair et al., 2009) 
14 (Koch et al., 2023) 
15 (Zugal, 2013) 
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2 Research Design 

The study is conducted using an exploratory research strategy. The justification for 

this approach is due to the research objectives and lack of formal literature connect-

ing the chosen fields. Also, the study takes a post-positivist approach, as most stud-

ies that employ computational techniques measure behavioral outputs and cogni-

tive processing time in milliseconds but will critically evaluate the use and under-

standing of the cognitive approach to modeling SPM.  

A SLR is used to collect and combine studies from multiple disciplines. Using a SLR 

is essential for the chosen subjects as there is no formal review found to support the 

linkage between fields. The rationale for conducting a systematic review of the con-

nections between these fields is that it establishes a research baseline for future con-

tributions. This SLR is structured in accordance with the guidelines of the 2020 up-

date of the Preferred Reporting Items for Systematic reviews and Meta-Analyses 

(PRISMA) statement.16 Following the PRISMA checklist as closely as applicable to 

this study (p. Error! Bookmark not defined.), the remainder of this section will de-

tail the protocol for executing the SLR in terms of planning, conducting, and report-

ing the review in a methodical and accepted manner for the scientific community.  

2.1 Eligibility Criteria 

In this study, citations were only accepted within a 30-year period, published from 

April 1993 to April 2023. The reason for this timeframe for inclusion is because the 

field of psychology is far older than the current state of technology today; it took a 

considerable amount of time for the two areas to cohabitate, with the fields not re-

ceiving full attention until in the early 1990s with researchers like Kieras and Sun.17,18 

For exceptional cases where originating theories or models needed referenced, they 

were included. Only studies conducted in English language were included. Only 

(accepted or submitted) journal articles, conference proceedings, reports, and other 

grey literature such as theses/dissertations were included. News articles, maga-

zines, blog posts, and similar informal literature was excluded. Furthermore, any 

sources that were not within the scope of cognitive/behavioral psychology, SPM, or 

CM were excluded. Only sources that did not fit any exclusion criteria and fit all 

inclusion criteria were included. Table 1 shows the inclusion and exclusion criteria 

used. 

 

16 (Page et al., 2021) 
17 (Kieras & Meyer, 1997) 
18 (Sun, 2006) 
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Table 1. Inclusion/Exclusion criteria  

Include Exclude 

Published between April 1993 and April 2023 Published outside search period 

Language Not conducted in English 

Source type (article, book, conference, grey literature) Not an accepted source type 

Within topic scope Outside of topic scope 

Full-text available Full-text not available 

2.2 Information Sources  

A combination of register, journals, websites, and databases was used to identify 

studies. Conference proceedings from the International Conference for Cognitive 

Modeling (ICCM) were thoroughly scanned for the years 2010-2022. Epistemonikos 

is a database consisting of systematic reviews in a wide range of subjects and was 

used to scan for relevant systematic reviews.19 IU Library aggregates several data-

bases and was therefore used to perform a wide search of literature, which covered 

most of the recognized electronic sources that were identified to be useful to SLRs 

in the software engineering discipline: 20 

• IEEExplore21 

• ACM Digital Library22 

• ScienceDirect23 

Also included on the list of recommended sources is Google Scholar,24 which was 

used in a separate search.  

2.3 Search Strategy 

To provide a blanket search inclusive of all topics, general keywords were used with 

wide-scoping Boolean expressions. Filters and updated keywords were then used 

to narrow the scope of search results to account for subject accuracy within the 

study. Because of the limited scope of this paper to solely focus on SPM, and to not 

cover all the different areas of project management – namely, construction, indus-

trial, and healthcare project management – respective subjects to exclude were 

 

19 https://www.epistemonikos.org   
20 (Brereton et al., 2007) 
21 https://ieeexplore.ieee.org 
22 https://dl.acm.org 
23 https://www.sciencedirect.com 
24 https://scholar.google.com   

https://www.epistemonikos.org/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.sciencedirect.com/
https://scholar.google.com/
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added to keyword searches to further improve searches. Table 2 clearly shows each 

information source along with its type, name, and the date on which it was accessed. 

Table 2. Information sources  

Type Name Search Date  

Register IU Library 04/04/2023 

Journal Cognitive Computation 04/04/2023 

Journal Cognition, Technology & Work 04/04/2023 

Web Google Scholar 12/04/2023 

Database Epistemonikos 14/04/2023 

Web ICCM Conference Proceedings  25/04/2023 

 

Search results with astronomical numbers returned were first refined by updating 

the search string to delimit subjects. For example, to distinguish software project man-

agement from construction project management, the keywords ‘construction’ and ‘in-

dustry’ were selected to be found within each source’s title and full text, and was 

delimited from the results. Afterwards, filters were applied, such as ‘sources’, ‘pub-

lications’, and ‘subjects’. The full search strings, along with how each search was 

updated and the number of results returned, are detailed in Table 3. 

2.4 Selection Process 

Sources were passed through a series of screening processes by one independent 

reviewer (the author).25  Certain researchers suggested a ‘Single screening with text 

mining’26 approach that leverages machine learning (ML) to increase screening ac-

curacy. That approach is used in this paper during the title/abstract screening phase, 

in a multi-stage process detailed in the remainder of this section. 

1. Data preprocessing. Search results from multiple sources were cleaned and 

merged into one file using Python for export into screening tools. Code was 

written to automatically find and insert missing DOIs and abstracts from 

each article (see Data Cleaning), while code was adapted from an existing 

repository27 and customized to convert formats (see Springer Link CSV to 

Bibtex and Springer Link CSV to Bibtex Parser). 

 

25 Having an independent researcher screening sources is known to be a ‘conservative’ approach in 

terms of cost and labor involved, as there is a tradeoff between the biases of only one decision-

maker and the advantages of not having coding disputes that need resolved. 
26 (Shemilt et al., 2016) 
27 https://github.com/0xFORK/csv2bib  

https://github.com/0xFORK/csv2bib
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2. Initial screening. Cleaned search results were uploaded into Abstrackr28 and 

screened on title and abstract.29 A prediction percentage (shown in Figure 

22) and a ‘hard’ prediction of true/false is attached to each citation after suf-

ficient studies have been screened.  

3. Text mining. The full dataset from Abstrackr was downloaded and added 

into Orange30 for analysis. Predictions made by Abstrackr were down-

loaded in a separate file and joined into the full dataset (Figure 3 and Figure 

4). Citations that were screened for relevancy (n=675) were separated into a 

training set to train a classification model in Orange. Keyword extraction 

utilized the term frequency-inverse document frequency (TF-IDF) score, a 

statistic that measures how important a word is to a document. The process 

and results from this stage are shown in Figure 5 and Figure 24.  

4. Document classification. Using the extracted keywords, a classification model 

was built using the k-nearest neighbor (kNN) technique (Figure 6; for 

model validation scores, see Figure 23). This organized the full dataset into 

clusters based on word score (presence and count) weighted by the ex-

tracted keywords. This step was important for synthesizing correlations in 

research domains as the analysis that follows highlights key gaps and 

trends in the relationships between research topics. 

5. Screen on Title & Abstract. Results from Orange were uploaded to EPPI-

Reviewer31. Citations that were screened as ‘include’ were automatically 

sent to the next phase of screening, while those screened as ‘exclude’ were 

excluded from the study. The remaining studies that did not undergo an in-

itial title/abstract screen, but were passed through Abstrackr’s prediction 

algorithm, were accepted. All remaining search results from other sources 

were uploaded to EPPI-Reviewer and screened. 

6. Screen on Full Text. The next phase of screening was a two-step process of 

retrieval and inclusion/exclusion: First, for each citation the full text PDF 

document had to be retrieved digitally. If the full text was not available to 

the researcher via institutional access, open-source, or freely-available text 

download, it was excluded under the exclusion criteria of ‘Exclude – full 

text not available’. Once the full text was retrieved, it was further analyzed 

to be judged for inclusion/exclusion. Full texts of the studies were analyzed 

 

28 https://abstrackr.cebm.brown.edu    
29 Abstrackr is a tool that uses a ML algorithm to expedite the screening process by making a pre-

diction on the relevancy of unscreened citations. 
30 https://orangedatamining.com 
31 https://eppi.ioe.ac.uk/EPPIReviewer-Web/home   

https://abstrackr.cebm.brown.edu/
https://orangedatamining.com/
https://eppi.ioe.ac.uk/EPPIReviewer-Web/home
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based on the inclusion/exclusion criteria and either marked for data extrac-

tion if included or removed from the full study if excluded.  

2.5 Data Extraction Process 

Relevant text in each study was assigned to coding tools that were grouped by re-

search question. The process included highlighting the appropriate text and clicking 

which coding tool/research question it belonged to. No automation tools were used. 

Data was assigned to coding tools for the purpose of further synthesis and classifi-

cation. For this purpose, other variables that were not exclusive to research ques-

tions, but to the SLR, were created and assigned. These variables include:  

• Extracted. Studies that were fully passed through the data extraction phase 

and required no further analysis. 

• Cross-referenced. To mark that a study’s references have been fully exam-

ined.  

• Reference framework. To mark a study as one that provides a referenceable 

framework for building conceptual models.  

• Cross-reference. To mark individual text passages relevant to the SLR requir-

ing a citation check.  

• Research needs. To document mentions of further research requirements.  

• Main point. To highlight the main findings of each study.  

If a study was given the code ‘Cross reference’ (either pointing to a specific reference 

or to the general study), the next step was to perform backward snowball sampling 

to cross-check all relevant references that may not have been found in the initial 

searches.32 This approach included sub-processes of scanning each marked study’s 

reference list for title and journal, locating and screening on full text, and applying 

inclusion/exclusion criteria based on study scope.  

2.6 Synthesis Methods 

All studies coded in data extraction were exported as reports into Excel. Each row 

of the report included all extracted data from each study, while the columns orga-

nized all data by research question. Synthesis was performed using pivot tables and 

visualizations inside Excel. Also, EPPI-Reviewer’s reporting function includes a 

‘quick question report’ that allows narrowly focused reports to be formed based on 

ad hoc analysis intentions of the reviewer; this function was used to synthesize re-

sults by forming shorter reports of multiple research questions for further analysis. 

 

32 (Wohlin, 2014) 
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To further explain this process, an example is where a report is formed with RQ1 

and RQ2 selected, and only the studies with extracted data in those two categories 

would be included in the report, allowing the reviewer to more efficiently synthe-

size research that covers only RQ1 and RQ2.  

Text mining of title and abstract was performed after data extraction using the 

Lingo3G33 clustering API included with EPPI-Reviewer. Clustering documents after 

extraction as opposed to before allowed for more efficient cross-tabulation of in-

cluded studies and clusters that more accurately defined the research scope. Clus-

ters were visualized in tables and graphs to aid synthesis.   

 

Figure 3. Dataset building process in Orange (a) 

 

33 https://www.carrotsearch.com/lingo3g/   

https://www.carrotsearch.com/lingo3g/
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Figure 4. Dataset building process in Orange (b) 
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Figure 5. Keyword extraction process in Orange  

 

Figure 6. Model building process in Orange
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3 Cognitive Modeling 

Cognitive models explain different cognitive processes along with their relation-

ships and exchanges between one another in a symbolic, replicable, and visual way. 

CM has been used in research to model a variety of tasks from a wide range of dis-

ciplines, and to test and formulate new hypotheses on behavioral outputs of the 

subjects being researched. CM is especially significant in research settings due to its 

capacity to provide clarity on the psychological plausibility of cognitive theories.34  

While cognitive models can vary in definition from overly symbolic and merely 

representative to mathematical, researchers apply CM to test and increment 

knowledge in cognitive science using computational models, which in this study will 

be defined as cognitive models reduced to algorithmic components. The evaluation 

process of cognitive theories using computational modeling can be seen at a high 

level in Figure 7. 

 

Figure 7. A conceptual scope for computational model development.35 First, theories are formally 

developed into models that describe its theoretical boundaries; then, models are made replicable 

by reducing them to computations and algorithmic components; next, the computational models 

are used to simulate human behavior and the results of simulations are compared with empirical 

observations; finally, the results are used to further refine the theory, and the cycle begins anew. 

Although there is much overlap in the definitions and applications of computational 

and cognitive models, the same considerations are taken in their development. The 

 

34 (Gigerenzer & Brighton, 2009, p. 128) 
35 (reproduced from Emond & West, 2003, p. 530) 
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conceptual scope of cognitive model development highlights the considerations 

that researchers should take when developing cognitive models. Figure 8 provides 

a visual overview of these considerations, separating the decision domains into in-

formation, mental events, and behavior. The information domain is where the re-

searcher specifies the scope of the model by deciding which real-world phenomena 

the model should cover. The mental events domain is the intermediate stage where 

the model’s inputs are transformed; where the researchers should gauge and refine 

the model based on its compatibility, separability, and testability. The behavior do-

main is where the model’s outputs should be evaluated for predictive accuracy.  

A similar conceptual framework for cognitive model development (Figure 9) shows 

how the previous scope can fit inside the domain suitability group. In this framework, 

Schürmann shows the interplay of the cost-benefit decisions researchers must make 

after domain analysis, and how this evaluation process is iterative between research 

questions, resources, and model design.36 To fully encapsulate cognitive processes 

into conceptual, computational, and cognitive models, it is necessary to first provide 

a background knowledge of cognition to understand the scope of cognitive theories 

that can be modeled.  

3.1 Cognition 

The various cognitive processes focused on in this study have, at times, distinct ap-

proaches for both modeling and theorizing; however, let’s consider two analogous 

perspectives of cognition to provide a high-level understanding.  

First, Simon comprehensibly illuminated cognition in his analogy of an ant walking 

on a beach: a person perceiving an ant taking a complex path across a beach may 

attribute the complexity of the path taken by the ant to the intelligent behavior of 

the ant, when in fact the complexity only came from the terrain which the ant was 

traversing.37 Human cognition can then be thought to have similar associations as 

the ant has with its environment; a makeup of simple internal mechanisms that re-

spond to complex stimuli. Simon’s analogy illustrates how complex behavior, 

whether in humans or ants, is intricately related to the complexity of their cognitive 

knowledge. 

Second, Card et al. describe an analogy of the human mind as an ‘information-pro-

cessing system’.38 Here, it is conceivable to think as a computer engineer, who 

 

36 (Schürmann & Beckerle, 2020) 
37 (Simon, 2019, p. 64) 
38 (Card et al., 1983, p. 24) 
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would describe a computer – at the system level as opposed to component level – 

to be the interconnection of memory, processors, and their parameters. Thinking of 

cognition in this same way allows one to envision cognition as a complete system. 

In this perspective, cognition is the collection of processors that manage different 

mechanisms like memory, perception, and attention; where the input is infor-

mation, and the output is complex behavior.  

In this light, in the following section each main cognitive process included in the 

study will be discussed so a formal definition of each can be established. These cog-

nitive components are then connected in a modular manner, akin to an information-

processor, to define cognition as one all-encompassing system of simple parts that 

outputs complex behavior, as Simon’s ants.  

Decision-Making 

The highly dynamic process of decision-making considers that decisions are not bi-

nary events but invariably affected by incoming information. In this understanding, 

decisions can be influenced by individual feedback from stimuli in ones’ visual re-

ceptive field and task environment to produce behavior that requires adaptation to 

conditions or events. Such feedback on a cognitive level requires actions to be taken 

to achieve a goal, where subsequent decisions are made in response to prior actions 

or events; all under constraints of time and fluctuating environments that do not 

allow for prolonged mental processing before deciding.39 

Researchers have identified two disparate modes of decision-making: intuitive and 

analytical.40 Intuitive decisions are made based on imbedded contextual pattern 

recognition, and analytical decisions are those that generally abide by symbolic 

rules. Analytical decision-making is therefore more measurable in an academic con-

text (using computational models), as behavior and task performance can be evalu-

ated and recorded while simultaneously modifying the symbolic rules that make-

up the decisions. Intuitive decisions are highly complex to study, as it is challenging 

to artificially reproduce human pattern recognition of situations, which turns the 

cognitive process into a ‘black box’ where each module cannot be properly under-

stood.40  

 

 

 

 

39 (Prezenski et al., 2017, p. 2) 
40 (Kennedy & Patterson, 2012, pp. 15–16) 
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Memory 

The processes of memory and learning are directly intertwined and can be thought 

to include perception as a vital component. Memories are mostly induced as bot-

tom-up perceptual processes;41 however, at a low-level, information gets stored into 

long-term memory after these perceptual processes, and is recalled from working 

memory in schema referred to as ‘chunks’ that reduce the mental effort involved in 

retrieval.42 Aside from working and long-term memory, researchers define ‘external 

memory’43 as a process of memory storage outside of cognitive processes (i.e., infor-

mation written on a document such as a blackboard or sticky note), which will be 

an important concept to note as they relate not only to process models but to specific 

SPM behaviors.44  

Memory can also be divided into two different systems, declarative and non-declara-

tive.45 Declarative memory entails consciously recalling facts and events, while non-

declarative (or procedural) memory entails the dynamic extraction of elements and 

patterns from detached events, also supportive of the development of skill-based 

motor abilities.46 This type of processing can be encapsulated in the instance theory 

of automatization that details the automatic processing of information after routine 

practice of behavior in a consistent environment, where cognitive mechanisms 

called ‘instances’ represent separate units of memory retrieval.47 

Attention 

Attention is a cognitive process affected by individuals’ evaluation of the visual 

world. It is a vital human cognitive process because it filters incoming sensory in-

formation based on relevance.48 Visual cognition limits the volume of information 

and rate at which it can be accessed from visual short-term memory, therefore mak-

ing attention a capacity-limited process.49  

 

41 (Laird et al., 2010, p. 4) 
42 (Newell, 1994) 
43 (Sweller, 1988) 
44 (Zugal et al., 2011) 
45 (Squire, 2004, p. 171) 
46 (Patterson et al., 2013, p. 333) 
47 (Logan, 1988) 
48 (Kotseruba & Tsotsos, 2020, p. 37) 
49 (Marois, 2005, pg. 296) 
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In neuroscience, attention is studied with eye-tracking technology and attentional 

models.50 On a neurocomputational level, visual attention is a facilitation of the co-

ordinated retinal and foveal movements that elicit an extraction of background and 

foreground objects from individuals’ direct and peripheral perceptive fields.51  

One study saw researchers observe how information processing involved in brows-

ing behavior involves a user’s attention to every meaningful area of the screen in a 

minimal amount of processing time, followed by the decision to move to another 

area depending how their goals are attained.52 In the context of SPM, individuals’ 

attention processes when scanning websites and interacting with technology (i.e., 

mobile and web applications) is especially relevant. 

Problem-Solving 

Problem-solving refers to the interactive processes of memory, perception, and at-

tention to find solutions and achieve goals. The act of solving problems starts with 

identification in the initial state, where actions are then taken to reach an intended 

objective or goal state, and further actions to reach the solution are taken to com-

plete the goal.53 The space of all possible actions that can be taken combined with 

the information processing boundaries of the problem-solver describe both well and 

ill-defined problems.54  

The three main processes of problem-solving identified by cognitive psychology are 

inference, search, and recognition, with the latter two mainly being used in object or 

pattern recognition and other problems of low complexity.55 While many concep-

tual models can exceed the complexity of problems that search and recognition 

cover,56 human cognition seems to have developed critical shortcuts in solving these 

problems that minimize the effort involved (see: Biases, Heuristics). Due to the un-

bounded variety of strategies, the flexibility of the human cognitive system to use 

different complex algorithms and heuristics, and due to the multitude of tasks and 

solutions that make-up any problem space, 57 deciding which rules to use to model 

problem-solving computationally is a challenging task. 

 

 

50 (Borji & Itti, 2012) 
51 (Borji & Itti, 2012, p. 185) 
52 (Chanceaux, 2014, pg. 1) 
53 (Mair et al., 2009, pg. 1) 
54 (Hayes, 1978) 
55 (Larkin & Simon, 1987) 
56 (Zugal et al., 2011, pg. 2) 
57 (Howes et al., 2009, p. 717) 
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Complex Cognition 

When thinking in terms of the complexity of cognitive processes, complex cognition 

relates those mental activities that interact and symbiotically make-up higher-order 

processes such as problem-solving and decision-making.58 Mental activities that are 

almost automatic, like perception and attention, can be seen as basic cognitive pro-

cesses that fundamentally create higher complex cognitive structures. For example, 

backcountry skiing requires dynamic decision-making based on mental models that 

respond to feedback from responses to stimuli in a skier’s environment.59  

In this way, complex cognition can be defined simply as the mental processing 

when information is being derived from other information. Many tasks in SPM in-

volve complex cognition to complete, as project managers are constantly making 

decisions about resource allocation, analyzing, or strategizing based on available 

information from project databases. 

3.1.1 Existing Theories  

Theories of cognition hypothesize how knowledge is stored, accessed, and used in 

the higher functioning of problem-solving and decision-making to try at ‘reverse 

engineering the mind’60. The types of models that exist range from probabilistic to 

rational, and from bottom-up (connectionist) to top-down (probabilistic), while the 

main theories describe cognition in multiple ways of conscious versus unconscious 

decision-making behavior.  

Dual Process Theory 

An important theory of information processing, reasoning, and decision-making 

comes from Kahneman’s interpretation of the fundamental Dual Process Theory, 

which states there are two systems of thinking (S-I & S-II) that undertake dissimilar 

actions to control thought processes in decision-making: S-I is the intuitive system 

that acts unconsciously, effortless, quickly, and emotionally, while S-II is the rea-

soning system that acts slow, consciously, and rationally.61,62 Because human cogni-

tive processes are traditionally thought to be rational by nature, it is common to 

believe that by modeling rational S-II processes researchers can come to an approx-

imate computation of reasoning and decision-making.  

 

 

58 (Knauff & Wolf, 2010) 
59 (Prezenski et al., 2017, p. 1) 
60 (Griffiths et al., 2010) 
61 (Kahneman, 2017) 
62 (Almomani et al., 2021, p. 1) 
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Figure 8. A conceptual scope for cognitive model development.6 
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Figure 9. A conceptual scope with domain suitability and cost-benefit decisions.63 

 

63 (Schürmann & Beckerle, 2020, p. 2) 
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Rational Analysis 

According to the theory of rational analysis, knowledge is accessible based on its 

probability of being utilized in a specific context.64 The immediate assumption de-

fined in economics is that humans have unlimited computational resources and can 

generate the most optimal decisions in any context, the so-called ‘rational person’65; 

but it is more correct to say that decisions are made after determining them suffi-

cient based on a characterization of the environment. This process, called satisficing, 

is in line with the important theory of Bounded Rationality66, where human deci-

sion-making is constrained by limited knowledge and various psychological as-

pects – analogously known as the ‘dancer’ (bounded rationality) and the ‘ballroom’ 

(task environment).67 Bounded rationality is a key theoretical framework to consider 

in the research of decision-making in SPM tasks, where the software project man-

ager is the dancer and the software project environment is the ballroom.  

Expected Utility Theory (EUT) explains how rational decisions can be computed, 

having roots in behavioral economics. In EUT, all possible outcomes from a partic-

ular decision are averaged and the resulting score is used to weigh the probabilities 

of utilities;68 finding usefulness in application such as network models which aim to 

find the optimal path from start to finish.  

Marr’s Levels of Analysis 

While rational analysis is comprehensive of the whole cognitive system, the contin-

ual work of cognitive science is aimed at bridging the levels of analysis between the 

rational and computational levels to model how decisions are made, not just be-

cause of psychological processing but of abstract computational processes as well.  

According to Marr, cognitive processes can be modeled on three different levels: the 

computational level serves information-processing as a top-down method of solving 

problems using abstract statistical calculations (why we do things); the algorithmic 

level explains the cognitive processes concerned with representing and manipulat-

ing information (how we do things); and the implementation level explains how the 

internal algorithms can be represented physically.69 While there is an established 

consensus of the usefulness of these different levels, it is often the case for cognitive 

scientists where establishing a connection between the levels is difficult.  

 

64 (Anderson, 1996) 
65 (Fu & Pirolli, 2007, p. 361) 
66 (Simon, 1957) 
67 (Fitts, 1954, p. 391) 
68 (Kutsch & Hall, 2005) 
69 (Marr, 1982) 
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3.1.2 Biases, Heuristics, & Cognition 

Cognition can be fundamentally biased. Cognitive biases exist when there are in-

congruities between a correct answer and an individual’s answer, as determined by 

normative rules.70 For example, let’s say complexity comes from the ability and need 

to anticipate future events: hindsight bias, which gives individuals the belief that 

future events are more predictable than they really are, occurs because not all future 

events are related to past events.71 In other words, foresight may indeed be corre-

lated to hindsight, but it does not signify a causal link.  

While cognitive biases can be generalized to many different contexts and tasks, the 

intent for this study is to only focus on the biases that are prevalent in the SPM field 

and thus can be adapted using CM, being anchoring and adjustment, order effects, 

availability bias, and planning fallacy. Anchoring and adjustment happens when 

choices are made under uncertainty and involve numerical outputs, as individuals 

tend to anchor to a number and adjust their choice depending on the distance from 

the initial anchor.72 Order effects describes how the order in which information is 

received affects the overall judgement of the information.73 Availability bias ex-

plains how the easiest information to recall cognitively provides an overconfidence 

of that information being correct.74 Planning fallacy is a subcategory of optimism 

bias, which describes the tendency to underestimate task completion times.75 

Heuristics are another cognitive phenomenon that are like biases in that they can 

induce errors into judgements and help to make quick decisions; however, it is best 

to think of heuristics as ‘mental shortcuts’ for solving problems with limited mental 

resources, because ultimately, they allow for the robustness of cognitive capacity.76 

Understanding how to model both biases and heuristics is important for applying 

theoretical assumptions to conceptual models.  

3.1.3 Cognitive Models 

Constraints exist when trying to match complex quantitative data to a model, as the 

structure of the task to be modeled along with the rigidity of the architecture adds 

 

70 (Montibeller & Von Winterfeldt, 2015, p. 1) 
71 (Cunha & Moura, 2015, p. 2) 
72 (Aranda & Easterbrook, 2005, p. 346) 
73 (Griffiths et al., 2012, p. 268) 
74 (Flyvbjerg, 2021, p. 540) 
75 (Kahneman & Tversky, 1979, p. 315) 
76 (Gigerenzer & Brighton, 2009, p. 109) 
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to its complexity, and the fundamental goal of CM is to model and predict the in-

terplay of multiple complex systems in a simplified way.77 CM is a powerful analyt-

ical technique that can identify and reproduce cognitive phenomena such as heu-

ristics and context effects;76,78 but in reality, to what extent of our understanding of 

cognition can be reproduced in a computational way is still up for debate.  

In one way of thinking, the purposefulness of CM is mainly hypothetical; that is, to 

test and modify hypotheses of both separate and interconnected objects based on 

cognitive theories. In this way, a qualitative approach of analysis is taken to under-

stand how cognitive systems are at work and the relation they have to other objects 

inside the whole cognitive system. To effectively model parallel objects of cognition, 

different theoretical approaches can be taken. 

Rational, Probabilistic, & Connectionist Models 

Just as there are different theoretical branches of psychology, there are diverse opin-

ions on how to correctly model cognition. Probabilistic Models aim to deduce psy-

chological or neural processes from top-down problems, but Connectionist Models 

are first examining the problem space that cognitive processing can solve before 

applying them to external problems.79 Probabilistic models therefore make it easy 

to study the effects of different assumptions implemented on different tasks, to 

study biases and heuristics, and explain how humans generalize differently in dif-

ferent situations;80 while connectionist models are more efficient at studying a spe-

cific stream of knowledge in explicitly defined processes.  

Rational Models of cognition cover processes of thought,81 memory,82 and general-

ization that assumes an optimal choice is being made. These models are a key to 

bridging Marr’s levels of analysis (computational and algorithmic) with the insights 

provided by probabilistic models.  

The steps in creating rational process models are: (1) define an algorithm that can 

be probabilistically inferred; (2) determine whether the algorithm’s components 

properly define the understanding of cognitive processes; (3) determine how well 

the model fits to certain behaviors. Rational process models could be a powerful 

resource when examining decision-making processes in SPM, as they are a way of 

 

77 (Chernova et al., 2022, p. 428)  
78 (Lee et al., 2019, p. 141) 
79 (Griffiths et al., 2010, p. 359) 
80 (McClelland et al., 2010, p. 353) 
81 (Sanborn et al., 2010, p. 1144) 
82 (Anderson, 1990) 
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combining modeling approaches in the context of information-processing con-

straints. To combine modeling approaches, researchers are required to provide pre-

cise conclusions on vague theories, which requires the act of formally modeling 

these theories to improve their precision. One way to do this is through the devel-

opment of cognitive architectures.  

3.1.4 Cognitive Architectures 

Cognitive architectures act as proposals to existing theoretical frameworks. Repre-

senting cognitive theories as modular structures makes them easier to study and 

test and helps add to the wide body of research in cognitive science. They are the 

structures that cognitive models are built on top of and share the same constraints;42 

examining human behavior in terms of the interaction between many cognitive pro-

cesses and the underlying mechanisms that make it up. Cognitive architectures 

have three main systems: memories, processing units, and language.83 Memory systems 

act as storage for knowledge, processing units are the mechanisms for storing, se-

lecting, and accessing knowledge, and language systems manage the representation 

of stored knowledge.  

There is a clear distinction between mathematical models that implement cognitive 

processes (such as neural networks) and cognitive models built on cognitive archi-

tectures, in that the latter are directed at forming cognitive interpretations of behav-

ioral processes as a form of abstraction of the underlying mechanisms.84 In over 40 

years of research and development of cognitive architectures, many have been iden-

tified and each has a specific range of cognitive theories that they include.85 Due to 

the copious number of cognitive architectures in existence and the wide set of cog-

nitive phenomena they reproduce, only those that are most prevalent in research 

and applicable to the field of SPM research will be covered in detail throughout this 

study. 

ACT-R 

Anderson first articulated about the structure of cognition and its complexity to 

model, that, “The whole is no more than the sum of its parts, but it has a lot of 

parts.”64 The cognitive architecture with the most widely accepted theoretical base, 

ACT-R, was developed specifically to model and fine-tune the learning and pro-

cessing of knowledge from disparate parts, both numerous and abstract.64 Originat-

ing from the idea of modeling how humans write recursive algorithms, ACT-R is 

 

83 (Laird, 2008, p. 2) 
84 (Prezenski et al., 2017, p. 4) 
85 (Kotseruba & Tsotsos, 2020) 
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made up of production rules that control how the theoretical parts interact. The 

main advantage that ACT-R has over other architectures is the incorporation of both 

long and short-term memory processors. Specifically, the way that the system deals 

with the processes of memory, categorization, and problem-solving is unmatched, 

which is why many researchers have used it as a baseline architecture to build in-

dividual theories on top of.  

Soar  

Another cognitive architecture that allows for a broad scope in its constraints on 

cognition, Soar, permits a similar level of abstraction of cognitive theories as ACT-

R.83 The specific advantage that Soar has over some architectures is its capability to 

generate new rules on top of the procedural rules placed by the modeler, which is a 

core function of complex cognition.86 The Soar architecture generates behavior as a 

series of movements through a problem space, with operators that define different 

goal states;87 where decisions are made in the architecture by it selecting the next 

operators to deploy. Unlike ACT-R, knowledge representation in Soar is symbolic 

instead of hybrid; memory processing is graph-based instead of connectionist; and 

learning mechanisms process analytically instead of from top-down or bottom-up 

flows.88 

3.2 Cognitive Modeling & Behavioral Science  

Where CM is a bottom-up technique of understanding the underlying interplay of 

cognitive processes, human behavior includes a multitude of phenomena that can 

be studied in a top-down way due to the observable nature of human performance. 

The intersection between cognition and observable behaviors forms the basis for 

various interdisciplinary fields, most notably in HCI, where designing seamless and 

intuitive UIs requires a fundamental understanding of how cognitive mechanisms 

shape user behavior. Because one of the principal goals of CM is to predict and 

study the behaviors that result from the influence of cognitive processes, a single 

theory of cognition represented in model form can predict not just one behavior but 

all behaviors within a derived space.89  

Other than HCI research adding to the current knowledge base of human behavior, 

fields like behavioral economics have been pivotal in the study of behavioral science 

 

86 (Liu, 2009, p. 578) 
87 (Newell & Simon, 1972) 
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by predicting human behavior using rational models;90 although behavioral econo-

mists are quicker to point out cognitive over behavioral biases when studying be-

havior using these models. Principles of behavioral economics can help understand 

the effects of biases on SPM decision-making by examining the underlying pro-

cesses and how they relate to errors in judgement and dual processing.91 Research-

ers with this idea have identified 10 of the top behavioral biases in project manage-

ment: anchoring and adjustment, order effects, availability bias, and planning fallacy are 

among the list of most relevant biases to consider when conceptualizing SPM pro-

cesses. These insights are crucial components of cognitive architectures that aim to 

capture the complex relationship between cognition, biases, and decision-making 

behavior. 

One important way to replicate cognitive theories into testable behavioral compo-

nents is to separate the individual systems and observe their interaction. Alongside 

CM techniques, engineers of behavioral models also build based off solidified the-

oretical frameworks and must incorporate the cognitive processes underlying hu-

man behavior into architectures to properly study the resulting behavior.92 Human 

performance is the focus of such models, especially in relation to environmental 

variables affecting the task.93 Human performance models can then be thought of as 

quantitative simulations of behavior enacted within the scope of a specific task en-

vironment and have a wide application of research in fields such as military opera-

tions94 and HCI.95  

User models in HCI are typically constructed to replicate human behavior in the 

interaction and design of UIs. CM has been pivotal in the understanding of HCI 

behavior by providing models and architectures that incorporate the underlying 

processes that motivate behavior such as typing on a keyboard, moving a mouse, 

visual search and attention, and physically selecting elements on a screen.19  

MHP 

The benchmark method of incorporating cognition into behavioral theories is using 

the Model Human Processor38 (MHP) framework. Again, seeing the mind as an in-

formation-processor, the MHP divides into three separate modules: perceptual, cog-

nitive, and motor. Each system has a devoted processor, and different tasks require 
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humans to enact different levels of control over these systems. The perceptual sys-

tem transfers sensory information from the physical world into internal representa-

tions. The cognitive system combines coded information from its working memory 

and previously stored information from its long-term memory to make decisions, 

while the motor system is responsible for carrying out the processed requests.  

The way that individual processors in the MHP model interact is governed by nine 

basic principles (see MHP Principles of Operation for the full list). For example, the 

Variable Perceptual Processor Rate Principle (𝜏𝑝) states that the rate at which the Per-

ceptual Processor cycles (𝜏) (responds to stimuli) is determined by the intensity of a 

stimulus (𝑝). In addition, the Principle of Rationality states that the sum of Goals, Task, 

Operators, Inputs, Knowledge, and Process Limits equates to Behavior. This guiding 

principle is a vital display of how bounded rationality is implemented within cog-

nitive architectures and behavioral models using MHP.  

GOMS & KLM 

The most significant model of human behavior observes cognitive functioning as a 

group of Goals, Operators, Methods, and Selection rules (GOMS). The GOMS model 

uses the MHP as its core methodological approach. A typical GOMS model aims to 

replicate one task, i.e., editing a document, and will include a set of goals, operators, 

methods, and selection rules that assist in the completion of the task. The GOMS 

model can be targeted at different analysis levels of user behavior (Functional, Ar-

gument, Unit-Task, and Keystroke).96 The Keystroke-Level Model (KLM) is a widely 

used subset of a GOMS model that targets the motor and cognitive processing in 

making keystroke-level actions (such as moving a mouse or typing on a keyboard). 

This model is especially useful in fields such as HCI, where the interval of time – 

between physical movements and both cognitive and perceptual processing – is 

measured in humans by observing their interactions with digital tools.  

EPIC 

Another architecture where the specific goal of measuring human performance 

takes a similar approach. EPIC was developed for the specific purpose of including 

human perceptual and motor controls into cognitive theories, so it reasons that the 

motor system needs to be accounted for instead of purely the cognitive aspects of 

cognition.17 For example, the visual system relies on inputs from users’ retina and 

fovea and thus depends on the motor coordination of different parts to create a per-

ceptual understanding of an environment. Furthermore, the key deliberation of 

EPIC is that human performance is controlled equally by cognitive processes and 

 

96 (Card et al., 1983, p. 259) 
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motor and perceptual mechanisms. Considering this, the various cognitive proces-

sors of EPIC are surrounded and therefore bounded by motor skills. Due to the in-

terplay of processors and both motor and perceptual mechanisms of EPIC, measur-

ing the metric of time is critically important when computationally simulating hu-

man performance. 

3.3 Cognitive Modeling & Software Project Management 

The field of SPM is especially suited for CM as the tasks that comprise the role of a 

software project manager are dependent on cognitive architectures for decision-

making, problem-solving, and memory – complex internal processes that are diffi-

cult to objectively define yet produce patterns of observable behavior inseparable 

from theory. While phases of projects (such as feasibility and design) may be imple-

mented in similar ways throughout software projects as they are in construction 

projects, the difference is in the complexity of IT products and tasks.97 It is in the 

very lifecycle of software development (SDLC) that gives SPM its specific focus to-

wards the delivery of software products.98 Therefore, it is vital to first examine how 

traditional PM models function so it can then be applied to SPM. 

3.3.1 Existing Models of PM 

The methods, domains, and artifacts that makeup the lifecycle of projects is funda-

mentally defined in knowledge base of the Project Management Body of 

Knowledge99 (PMBOK). The main ‘model’ of PM is the PMBOK, as it standardizes 

and provides credentials for industry-standard practices and tasks. In PM, the as-

sembly of tasks within a project create a network of interconnected activities. Tasks 

are known to be the fundamental building blocks of projects.100 Tasks are often con-

nected for the purpose of fulfilling business goals, where sometimes the connections 

between activities are stochastic and other times deterministic.  

Tavares took a wide-scoping view in their research, simply questioning how a pro-

ject can be modeled using a composition of tasks.101 The model stems from an im-

portant concept in PM carried over from operational research (OR): activities within 

a project collectively add up to achieving a goal (project delivery) when completed. 

In this method, any project can be modeled using a construction of different sets: 

 

97 (Andrade et al., 2015) 
98 (Nitin & Saini, 2022, p. 1) 
99 (Project Management Institute, 2017) 
100 (Heloisa & Tseng, 1996, p. 373) 
101 (Tavares, 2002, p. 2) 



 

 

 

34 

activities (tasks), precedence conditions (activities that need to be completed before an-

other task begins), attributes (each activity’s properties in relation to PM processes), 

and criteria (factors that influence project managers’ decisions, such as total duration 

or perceived risk).102 Researchers here referenced a basic network model of project 

activities that follows a stochastic modeling method (Figure 10). This style of model 

represents a direct graph model that has a clear starting and ending point, where 

connections between nodes and arcs represent different activities and precedence 

conditions necessary to complete a project.  

 

Figure 10. Two example network models of PM.101 Activity-on-arc (top) positions activities on the 

connecting arcs while the nodes represent the completion of activities. Activity-on-node (bottom) 

positions activities on the nodes, while the connecting arcs represent precedence conditions for 

completing the activities.  

Discrete Event models describe a discrete set of tasks that makeup the behavior of 

a system.103 The tasks in this type of model are performed sequentially, where time 

increments only when events take place, and the completion of an entire simulated 

event passes through process blocks that define specified sets of human behavior.  

System Dynamics models are used to simulate the architectural components of 

complex systems.104 The events inside system dynamics models have cause-effect 

relationships with the surrounding events, which allows the simulation of feedback 

within the modeled system (see Figure 13). The ability to replicate the interplay be-

 

102 (Battersby & Carruthers, 1967, p. 469) 
103 (Lakey, 2003) 
104 (Forrester, 1997) 
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tween events is an important technique to consider for modeling SPM, as the feed-

back between events allows a deeper analysis of the cognitive and behavioral dy-

namics between tasks in a project environment. 

In an alternative method, Snider & Nissen use activity vectors to model how 

knowledge flows within projects.105 Using software development projects as an ex-

ample, they describe two different flows, horizontal and vertical, that give con-

trasting perspectives of the knowledge gained through the linear sequence of re-

quirements (R), architectural design (A), software design (S), coding (C), and test 

(T). The horizontal flow of vectors (R-A-D-C-T) is highly explicit and follows formal 

project documentation, where knowledge flows horizontally as software is devel-

oped. The vertical process (r-a-d-c-t) corresponds to the knowledge gained through 

training and work experience. The latter flow is complimentary to the former due 

to its movement across flow times, between individual and group domains, and 

from tacit to explicit and back; whereas the only variation in the horizontal flow is 

the domain of time, as the software is developed.  

 

Figure 11. Model of PM knowledge flows106 

 

105 (Snider & Nissen, 2003) 
106 (Snider & Nissen, 2003, p. 9) 
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3.3.2 Existing Models of SPM 

Breaking down the specific phases of a software development project into definable 

processes that can be replicated is the first step in modeling SPM. The phases of a 

software project can be simplified to feasibility, defining the project and capabilities 

needed to complete it; requirements gathering, the back-and-forth process between 

client and company that documents formal project requirements; design, planning 

of the project structure; and implementation, where the project is constructed and 

delivered.107 The development of software products depends on incrementally add-

ing features; thus, PM methods are recurrent and cyclical, as every increment re-

quires the necessary planning and validation of project activities. The processes 

then follow a consistent template, because for certain activities, such as testing or 

frontend development, there needs to be certain proceeding events completed. This 

makes the different SPM process groups highly accessible to model and simulate 

while considering cognitive factors.  

Researchers developed a system dynamics model of SPM incorporating both soft-

ware development functions such as designing, coding, and testing, with PM activ-

ities such as planning, controlling, and monitoring.108 The unique aspect of their ap-

proach is the feedback system that modifies how variables interact based on the 

complex dynamics between activities within the project environment. Figure 12 

shows the early developments: a high-level model of SPM dynamics, which dis-

plays the basic cyclical nature of software projects. In this figure, each numbered 

item is a sequential step in the feedback loop of a project; showing how software 

projects are accomplished through resource utilization. If changes in steps 4 or 6 

cause further adjustments in the level or distribution of project resources (step 6), 

the loop repeats from step 1. While this is recognized as a basic overview of the 

project cycle, the researchers further adapt this model to include dynamic feedback. 

Further developments to their model can be seen in Figure 13. Here, project pro-

cesses are grouped into sections according to the various activities of a software 

project manager (HR Management, Software Production, Planning, and Control), 

and the cyclical nature of projects is still on full display. What they adapted in this 

model, however, is the feedback mechanism of activities within the project. It is ev-

ident in this model that activities have variable effects on others. For example, the 

rate that software is developed can moderate both the rate at which errors are cre-

ated, the perception of created tasks, project knowledge, and the actual and per-

ceived productivity.  

 

107 (Nguyen, 2006, p. 66) 
108 (Abdel-Hamid & Madnick, 1989) 
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Figure 12. Basic model of SPM109 

 

Figure 13. System dynamics model of SPM110 

 

109 (reproduced from Abdel-Hamid & Madnick, 1989, p. 1427) 
110 (reproduced from Abdel-Hamid & Madnick, 1989, p. 1430) 
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Other SPM models exist that take a differing approach in modeling the dynamics 

between project factors. Sukhodolsky proposed a deterministic model of SPM 

(Figure 14) that implements an important step in the control domain of PM.111 In the 

first stage, product features are created from specifications, and in future iterations, 

the features are tested and/or corrected according to management decisions; the sec-

ond stage is where measurements for analyzing project productivity and progress 

are collected; in third stage, measurements are analyzed; and the fourth stage is 

where management decisions for control are applied to modify the project plan. 

Each cycle of the control phase increments the cost of the project.  

 

Figure 14. Sukhodolsky's model of software process control112 

Researchers have developed a model of SPM called Software Project Management 

Net (SPMNet) that provides near-optimal solutions to software project problems by 

applying genetic algorithms to the solution-search space.113 The ‘Net’ wording of 

the model refers to its foundations, borrowing key concepts (such as tokens) from 

petri nets and adapting beyond them. Petri nets are a modeling technique where 

tasks, users, and technical systems can be simulated, and its results analyzed.129 The 

SPMNet model contains different sets: places, transitions, constraints, and arcs (see 

Appendix B for the complete formal definition). Figure 15 shows an example SPM-

Net.  

 

 

111 (Sukhodolsky, 2001) 
112 (reproduced from Sukhodolsky, 2001, p. 60) 
113 (Chang et al., 1998) 
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Figure 15. An example SPMNet model of SPM.114 Rectangles represent product places; ovals represent constraints that managers can optimally place inside 

the system; circles represent atomic activity places; double circles represent abstract activities; and diamonds represent decision places.  

 

 

114 (adapted from Chang et al., 1998, p. 538) 
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3.3.3 Existing Models with Cognitive Components 

Various models exist that either include cognitive components in the infrastructure 

of their approach, or they adapt basic modeling methods into cognitive systems. 

Some of these variations are provided as follows. 

Fuzzy Cognitive Map (FCM) modeling combines fuzzy logic and neural network 

algorithms to solve complex problems;115 therefore, FCMs are a graphical way of 

representing fuzzy rules that define a specified environment. Factors in FCMs are 

represented as nodes, with connecting arcs which have an attached positive or neg-

ative value describing their causal relationships (positive represents a direct rela-

tionship while negative equals an inverse one).116  

There are a few instances of FCMs being used specifically used for modeling various 

aspects of SPM. First, Tlili et al. developed a weighted FCM model that specifically 

examines software project risk, and identified five major risk factors: bad task sched-

uling, unskilled developers, technological aspects, budget limitations, and fuzzy objectives.4 

This model was further developed (Figure 16) to combine reinforcement learning 

(RL) within the FCM. RL helps model decision-making by first evaluating a set of 

decisions by trial and error, then computing their posterior distributions against the 

outcomes.117 Second, Chernova et al. adapted a broader approach, modeling project 

implementation of software projects using FCMs (Figure 17).7 Instead of specific 

weights attached to each arc, the model shows a direct or inverse causal relationship 

between factors. For example, an increase of risks negatively impacts both project 

duration and resources, while an increase in resources, although it adds to the pro-

ject duration, positively impacts the product quality.  

Petri nets are one method of modeling human interactions that are cognitively in-

spired. One researcher integrated task and user models with Petri nets to simulate 

and study task performing behavior.118 Figure 18 provides a visual display of the 

parallel operators of this model, while Figure 19 provides a closer look at the flow 

of tasks within the model. It is apparent, looking at these two examples, that tasks 

are the main building blocks used when incorporating Petri nets with cognitive user 

and task models.  

  

 

115 (Case & Stylios, 2016, p. 2) 
116 In the case of weighted FCMs, they have an attached value; but it is often permissible to use either 

a +/- symbol to represent a direct or inverse relationship between nodes.  
117 (Bagherzadehkhorasani & Tehranchi, 2022, p. 2) 
118 (Kontogiannis, 2005) 
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Figure 16. An FCM model of SPM risk factors with RL.119 Sensory concepts represent the risk factors 

that either directly or inversely affect outputs of risk (motor concepts). The addition of RL shows 

that feedback from high project costs inversely affects risk factors such as technological aspects 

and bad schedule.  

 

Figure 17. FCM model of SPM project implementation120 

 

119 (adapted from Tlili & Chikhi, 2021, p. 137) 
120 (reproduced from Chernova et al., 2022) 
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Figure 18. One example of an integration of user and cognitive models.121 The Task model organizes 

tasks required to achieve goals; the cognitive user model controls how agents cognitively select and 

prioritize tasks; and the executive mechanism is responsible for monitoring external events and 

making decisions about task processing. All these mechanisms operate in parallel with each other.  

Business Process Model (BPM) methods have been introduced to cognitive aspects 

as well. Figure 20 shows an example of a process model that uses cognitive agents 

to simulate workflows. In this model, each element inside a rectangle represents a 

cognitive agent; some event that controls and interacts with other agents according 

to specified rules. As a conceptual diagram, this model provides an overview of 

how each of the cognitive agents interact, and the nature of their interactions. A 

further look into how the cognitive agents in their model specifically operate is pro-

vided in Figure 21.  

 

 

121 (Kontogiannis, 2005, p. 243) 
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Figure 19. The flow of decisions in and out of a cognitive user model122

 

122 (Kontogiannis, 2005, p. 245) 
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Figure 20. A cognitive process management model.123 

 

Figure 21. How a cognitive agent operates inside the cognitive process management model.124  The 

process flow is in order from points 1-21: (1) A message is sent from an external agent; (2) The 

event is transformed according to entered rules; (3) A specific rule is fired; (4) A specified task is set 

in motion; (5) The task is activated; (6)The request is sent, but there is an error; (7) The error is 

recorded into a report for later; (8) The error triggers a new interpretation; (9) New rules are fired 

accordingly; (10) Another task is scheduled and (11) activated; (12)The new request is sent to the 

external agent; (13) The request arrives and the process is repeated inside another agent for steps 

14-21.  

 

 

123 (M. Wang & Wang, 2006, p. 186) 
124 (M. Wang & Wang, 2006, p. 190) 
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4 Results 

Included studies in the SLR and outcomes from document classification and clus-

tering will be methodically detailed in the following section. Section 4.1 provides 

the outputs of the SLR in terms of literary volume and source variety. Following 

that section, the results of document classification and keyword extraction will be 

presented for further discussion. Finally, in section 4.2 the clustering results will be 

analyzed in their relation to the included literature of the SLR and the research ques-

tions attached to the overall study scope.  

4.1 SLR Results 

Precise constraints were used throughout each phase of searching, screening, and 

selecting literature. Because software with ML capabilities was used to help facili-

tate these processes, outcomes were efficiently and accurately drawn. Advanced 

tools were not relied on too heavily, however, as manual selecting and filtering 

managed to draw more results. For example, the search results in the proceeding 

section produced around 10,000 studies to screen; but the number of studies se-

lected that were the result of citation screening and snowball sampling (see: Figure 

25) were nearly half of the included studies (46% of 97 total). This highlights both 

the effectiveness of the search strings and databases used, and an area which can be 

improved upon in future iterations. One improvement that has supported this step 

of an SLR for other researchers is the use of ML tools for creating search strings.125 

Nevertheless, sufficient resources were utilized for the entire search process. 

4.1.1 Search Results 

The search strategy was adapted for each source and therefore needed specific re-

finement. The search strategy flow for every source is detailed below in Table 3, 

which requires a brief explanation of the process and rationale of each. The follow-

ing sources were used to find studies: 

1. IU Library. After an initial wide-scoping search resulted in 13,685 articles, a 

filter was added to delimit the source type of results (to remove ‘maga-

zines’ and ‘news’ types). With 10,073 results remaining, a filter was used to 

restrict subjects: all subjects relating to mental health, healthcare, learning, de-

velopment, or construction/industry. A further update to the search string to 

restrict subjects (construction, industry, and offshoring) produced 4,721 arti-

cles which was deemed enough to proceed with. Finally, more variations of 

 

125 (Jiminez et al., 2022) 
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search strings were used in the same register to cover the full scope of re-

search. This produced another 642 results.  

2. Google Scholar. Iterative updates were not necessary from this source, but 

the approach was adapted slightly: When a relevant article is identified 

from the search, there is a link called ‘Related articles’ that directs the re-

searcher to a new list of results of citations that are semantically related. 

Only the articles that included multiple study topics (i.e., CM and BPM and 

SPM) were scanned for related articles. This process resulted in a total of 

213 citations. 

3. Epistemonikos. There was no further refinement needed from this source, 

as the amount of related SLRs is relatively low for the research scope. 14 to-

tal results were returned. 

4.1.2 Screening Results 

As there was an individual screener, the screening phase was a multi-stage process 

with the assistance of ML tools to aid the screening. Figure 22 shows the prediction 

scores of the first screening phase in Abstrackr. 1,001 citations were screened on 

title/abstract, and a total of five citations were predicted to be relevant to the study 

(of the remaining and unscreened citations).  

Results of the keyword extraction process can be seen in Figure 24. Keywords from 

this phase were used to train a classification model using the k-nearest neighbors 

technique (kNN). Test scores of the model were sufficient (Figure 23) and helped to 

classify documents into clusters ( 

Figure 27) used for further analysis in section 4.2. 

4.1.3 Selection Results 

Figure 25 shows the results for the process of selecting studies using the PRISMA 

2020 flow diagram. A total of 97 studies were included in the SLR.  

4.1.4 Risk of Bias in Studies 

Methods used to assess risk of bias in included studies were focused on confirma-

tion and publication bias. Publication bias was mitigated by including all grey liter-

ature (reports, conferences, theses/dissertations) in the full study. Confirmation bias 

was mitigated using ML tools to supplement screening decisions.  
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Table 3. Search strategy and results 

Date Source Search String Results Update Performed 

04/04/2023 IU Library 

cognitive modeling AND software project management 10,073 Subjects filter; removed all mental health, health 

related, learning, development, construction/industry 

cognitive modeling AND software project management 

NOT SU construction NOT SU industry NOT SU Offshoring 

4,721 
Added keywords 

(cognitive science OR behavioral science) AND (software 

project management OR IT project management) 

24 

Updated search string 

cognitive psychology AND (software project management 

OR IT project management) AND human computer 

interaction 

4 

process model AND (software project management OR IT 

project management)  NOT construction 

256 

human cognition AND cognitive modeling 266 

behavioral science AND human computer interaction 92 

04/04/2023 Cognitive Computation cognitive models AND software project management 118  

04/04/2023 
Cognition, Technology & 

Work 

cognitive models AND software project management 190  

12/04/2023 Google Scholar 

'cognitive' OR 'cognition' OR 'computational' AND 'project 

management' OR 'project manager' AND 'software' OR 

'information technology' -construction -OR -industry -OR -

medicine -OR -healthcare -OR -therapy -OR -therapeutical 

112  

human cognition AND cognitive modeling AND limitations 101  

12/04/2023 Epistimonikos cognitive model software project management 14  
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Figure 22. Prediction scores of remaining studies in Abstrackr, where the histogram’s x-axis shows 

the prediction score, and the y-axis shows the count of studies. The graph was automatically gen-

erated by Abstrackr after 1,001 citations screened, with 4,362 remaining. The maximum prediction 

score of remaining citations equaled 0.55 with a predicted 5 relevant citations.  

 

 

Figure 23. Scores from the kNN model show a highly accurate model. The Area Under Curve (AUC) 

score indicates a larger distinction or separability between classes of the model. Classification Ac-

curacy (CA) metric (95%) indicates how accurately the model can predict new data instances. The 

F1 metric also measures accuracy of the model but also accounts for precision and recall. Precision 

and recall measure the number of correct predictions made from all possible correct predictions. 

These scores all being above 92% indicate a highly accurate model. 

 

Test and Score

Settings

Sampling type: No sampling, test on testing data

Target class: None, show average over classes

Scores

Model AUC CA F1 Precision Recall

kNN 0.9805682953630176 0.9572261827608555 0.9390795871139538 0.9253661697990926 0.9572261827608555

Sun Apr 30 23, 11:01:38
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Figure 24. Keyword extraction results from Orange that were used to further refine the screening process. The 24 keywords with the highest TF-IDF score are 

shown (left). A word map was created to visualize the highest scoring keywords (right). 



 

 

 

50 

 

Figure 25. PRISMA 2020 flow diagram
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4.2 Cluster Analysis 

This section will display the connections across themes and research areas that were 

uncovered by the SLR through document classification and text mining. Significant 

associations will be interpreted for each respective clustering phase. Section 4.2.1 

will explain how data was synthesized prior to the screening phase in Orange, using 

a training set of search results. Section 4.2.2 provides an analysis of how the in-

cluded studies were grouped according to similar keywords in their title and ab-

stract. Therefore, these analyses will provide the groundwork for a critical interpre-

tation of the body of research within the highlighted domains.  

4.2.1 Orange Clusters 

After the initial screening phase, there were numerous studies remaining that were 

split into testing and training datasets. Within Orange, a kNN model was trained 

based on the keyword extraction results. Figure 27 shows the results of the cluster-

ing algorithm, and its outcomes are as follows.  

The overall structure of the figure provides a document map that displays the se-

mantic similarity between clusters. The clusters are spaced according to how they 

were arranged in a vector space in the visualization process, which is only a function 

of showing the clusters’ distance from one another.  

In each of the six clusters, there is an annotation of the top five keywords related to 

each study within their clusters. These keywords are significant in highlighting the 

characteristics of the SLR and the chosen research focus. First, the difference in com-

monalities between the sets of keywords is quite noticeable. For example, the set 

that contains human aspects (cognit, human, user, interact, …) is distant from the one 

with social aspects (knowledge, social, manage, capital, learn) and very distant from 

cluster 4 (risk, assess, decision, analysis, …); furthermore, the two clusters that have a 

management keyword are distanced from each other, with one having a more team 

and decision focus, while the other has a social and knowledge focus. Second, clusters 

1 and 3 share some overlapping space although they are semantically different (soft-

ware, machine, algorithm vs. cognition, human, user). This shows a somewhat unclear 

distinction between human and machine aspects amongst groups. Third, there are 

instances that were not clustered (the points without color on the figure), showing  

that although there was enough semantic similarity to be grouped in proximity to 

three clusters, the studies did not score highly for specific keywords; suggesting 

that, while the topics are very close to cognition, software, and knowledge, they include 

topics undiscovered by this clustering algorithm or not relatable to the SLR scope. 
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As a final note, it is noteworthy that these clusters are very distant in characteristics 

yet still included within the SLR scope. This ultimately provides a justification for 

further research connecting the domains of cognition, software, AI, knowledge, and risk.   

4.2.2 Lingo3G Clusters  

Clustering was also enacted on the studies selected in the final screening phase. The 

comparison between analyses of clusters is significant since the selected studies 

were manually extracted and separated from studies that did not fit the research 

scope. Accordingly, one could presume that the clusters should already share se-

mantic similarities. In this line of thinking, the task for clustering in this phase is to 

focus more on the individual studies that were included in each cluster, along with 

how the main cluster labels were generated. 

When looking at the overall makeup of each cluster, there are a few different anal-

yses that could support. First, one could look at the number of included studies per 

cluster. Figure 26 shows this, which makes sense in the SLR perspective, as most 

studies are within the Cognitive Modeling and Project Management clusters. Second, 

one could examine the breakdown of individual studies in the clusters. Table 4 lists 

each study included in each of the clusters, with labels automatically created by 

EPPI-Reviewer (the surname of the first author and year of publication).126 Table 5 

provides a further breakdown of studies organized by which clusters they were 

grouped into, shown in descending order of the most clustered to least. The table 

also shows which research question the studies were coded for in data extraction, 

and the respective sub-topic labels which were automatically added during cluster-

ing. Finally, Figure 28 shows the distribution of selected studies by publication year, 

where one could observe a slight upwards trend in published studies from the years 

of 1994 to 2022.127 

Cross-Tabulation of Clusters 

Examining the correlation of cluster topics requires a precise look at the studies 

which share relations. Figure 29 provides a grid of the number of studies in common 

between each sub-topic of the clusters.  

Cognitive Modeling & Project Management. The studies that share these clusters 

apply formal modeling techniques in a variety of ways. A common bridge between 

models and PM practices in the studies are with Business Process Models and Fuzzy 

 

126 While there was a small number of studies grouped into an ‘Other’ cluster, these were not listed 

in this table and treated as outliers to the cluster data. 
127 Although included in the SLR, the year 2023 was left out of the graphic as it would only include 

the first few months of the year and would skew the displayed results.  
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Cognitive Maps; suggesting that the use of FCMs to model SPM is one proven 

method of applying CM to SPM processes using BPMs. Additionally, the sub-topics 

of Software Development and Software Project Management connect CM and PM with 

two core topics: cognitive complexity and cognitive maps. This implies the applicability 

of cognitive-related concepts in BPMs.   

Cognitive Modeling & Cognitive Biases. Although it can be assumed that articles 

found in both clusters will be related to cognition in some ways, there is a connec-

tion between studies found in Probabilistic Models of Cognition and Cognitive Biases. 

With this, it can be suggested that there are inherent biases specific to probabilistic 

models over other cognitive models. It also provides insight into how cognitive bi-

ases can be represented in CM approaches. While no specific cognitive bias sub-

topics (Planning Fallacy or Availability Bias) are found in connection with CM, there 

is connection between Reinforcement Learning, Decision-Making Processes, and Task 

Environment.  

Cognitive Modeling & Decision-Making. This group sees the highest conjunction 

of behavioral and cognitive science topics. The connection with the highest quantity 

of studies (4) is Decision Model and Task Environment; studies with these labels aim 

at modeling decision-making using a variety of cognitive-based strategies (NDM-

based,128 Petri nets,129 etc.) and measure their performance based on the execution of 

specific tasks. The instance of CM and DM both being major cluster groups tells one 

that DM modeling is approachable using CM techniques, and that when discussing 

CM, DM is at the top of the list of related subjects being modeled.  

Project Management & Decision-Making. The sub-topic of Software Development 

Projects within the DM cluster had the most connection with the SPM sub-topic 

within the PM cluster. The articles attached deal with simulation within SPM,130,131 

resources allocation and prediction,132,133 and SPM decision models.134,135,136 The Indi-

 

128 (Fan et al., 2010) 
129 (Kontogiannis, 2005) 
130 (Medeiros, 2015) 
131 (Kouskouras & Georgiou, 2007)  
132 (Ge & Xu, 2016) 
133 (Masoud et al., 2018) 
134 (Colomo-Palacios et al., 2013) 
135 (Cunha et al., 2016) 
136 (Cunha & Moura, 2015) 
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vidual Level sub-topic of the DM cluster included one study that connected with De-

cision Model, Project Management Research, and Behavioral Decision Making: a study 

that modeled individual perceptions of project managers.137  

Project Management & Cognitive Biases. Articles that belong to the PM cluster 

only have either SPM, SE, or Behavioral Science labels, which correlates with the se-

lection of research in this study. In the CB cluster, there is at least one article in each 

of the generated sub-topics; and it is noteworthy that two sub-topics were created 

that are cognitive biases in of themselves, Planning Fallacy and Availability Bias. This 

highlights the prominence of these two biases within SPM and could help to aim 

further biases research in this direction.  

Cross-Tabulation of Clusters and RQs 

Another cross-tabulation that would prove to be effective is the correlation between 

clusters and RQs. Figure 30 exhibits the accuracy of clustering and extraction (RQ1 

is on cognition and represented well in the CM cluster; RQ3 is on project manage-

ment and shows the most distribution in the PM cluster), and it also shows the op-

portunities to synthesize connections between research questions. 

RQ1 is almost solely disbursed inside the CM cluster, which is logical given that the 

question is largely centered around CM. It is notable but unsurprising that the high-

est number of studies resides within the Human Computer Interaction label. RQ2 

shows a similar distribution, with one article belonging to the behavioral science label. 

RQ3 is disbursed into almost every sub-label of the clusters. Because RQ3 examines 

the preconditions of cognitive science in SPM, this connection suggests that Deci-

sion-Making and Cognitive Biases cluster labels are representative of these precon-

ditions. RQ4 interestingly does not include many studies within the latter two clus-

ters, although RQ4 is directly related to the preconditions mentioned before. Alter-

natively, one could examine how the relation of RQ4 to the thresholds of cognitive 

science in SPM modeling is only relevantly related to modeling; suggestive of the 

idea that these thresholds are dependent on modeling strategies.  

 

 

 

 

 

 

137 (Hackman, 2021) 
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Table 4. Included studies by cluster 

Cognitive Modeling Project Management Decision-Making Cognitive Biases 

Aranda (2005) 

Bagherzadehkhorasani 

(2022) 

Baia (2015) 

Chater (2008) 

Chen (2010) 

Cunha (2016) 

Fan (2010) 

Fechner (2015) 

Fernandes (2022) 

Fleischmann (2014) 

Flyvbjerg (2022) 

Griffiths (2010) 

Howes (2009) 

Jiménez (2021) 

Kennedy (2010) 

Kennedy (2012) 

Kieras (1997) 

Kouskouras (2007) 

Kutsch (2005) 

Kyllingsbæk (2006) 

Laird (2010) 

Lakey (2003) 

Lee (2019) 

Liu (2009) 

Mair (2009) 

Mair (2012) 

Mohanani (2018) 

Montibeller (2015) 

Nobandegani (2019) 

Prezenski (2017) 

Reitter (2010) 

Riesterer (2020) 

Ritter (2019) 

Sanborn (2010) 

Schürmann (2020) 

Snider (2003) 

Stingl (2017) 

Sukhodolsky (2001) 

Sun (2006) 

Abdel-Hamid (1989) 

Afacan-Seref (2018) 

Anderson (1996) 

Barros (2000) 

Bendoly (2007) 

Borji (2012) 

Chernova (2022) 

Cunha (2015) 

Cunha (2016) 

Emond (2003) 

Fagerholm (2022) 

Ferreira (2009) 

Gray (2008) 

Gruhn (2006) 

Hackman (2021) 

Jarecki (2020) 

John (1994) 

Jöhnk (2020) 

Kieras (2015) 

Kontogiannis (2005) 

Kriegeskorte (2018) 

Heloisa (1995) 

Ritter (2019) 

Rubinstein (2001) 

Snow (2007) 

Tlili (2021) 

Vinciarelli (2015) 

Williams (2003) 

Afacan-Seref (2018) 

Baia (2015) 

Chanceaux (2014) 

Chen (2008) 

Cunha (2015) 

Cunha (2016) 

Flyvbjerg (2021) 

Griffiths (2012) 

Gruhn (2006) 

Hackman (2021) 

Hiatt (2022) 

Kieras (2015) 

Kutsch (2005) 

Mohanani (2018) 

Morita (2019) 

Prezenski (2017) 

Reitter (2010) 

Schürmann (2020) 

Snow (2007) 

Stingl (2017) 

Yang (2022) 

 

Chanceaux (2014) 

Cunha (2015) 

Cunha (2016) 

Fechner (2015) 

Mohanani (2018) 

Morita (2019) 

Tlili (2021) 

Wang (2010) 

Yang (2022) 
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Cognitive Modeling Project Management Decision-Making Cognitive Biases 

Tavares (1994) 

Tavares (2002) 

Tsesliv (2022) 

Valiente (2012) 

Venkatesh (2018) 

Vinciarelli (2015) 

Wang (2006) 

Wang (2010) 

Wu (2022) 

Yang (2022) 

Zugal (2011) 

 

 

 

Figure 26. Study number by cluster 
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Figure 27. Clustered training dataset  
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Figure 28. Study number by year and cluster
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Table 5. Results of selected studies by cluster 

Cluster(s) Item RQ(s) Sub-topics 

CM, PM, CB, DM Cunha (2016) 3 Computational Models 

CM, CB, DM 

Mohanani (2018) 1 Information Technology 

Yang (2022) 2 

Cognitive Processes 

Decision-making Processes 

Decision Model 

Cognitive Architectures 

Task Environment 

Reinforcement Learning 

PM, CB, DM Cunha (2015) 3 

Software Development 

Business Process Models 

Software Project Management 

Business Process Models 

CM, DM 

Kutsch (2005) 1, 2 

Software Development Projects 

Project Management Research 

Support Software Project 

Software Project Management 

Project Cost 

Baia (2015) 1 (Other topics) 

Prezenski (2017) 2 
Cognitive Architectures 

Cognitive Science 

Reitter (2010) 1 (Other topics) 

Stingl (2017) 1 (Other topics) 

Schürmann (2020) 1 
Behavioral Science 

Project Management Research 

CM, CB 

Fechner (2015) 1 
Project Management Research 

Project Cost 

Wang (2010) 1 

Cognitive Processes 

Software Project Management 

Software Engineering 

PM, CB Tlili (2021) 2 

Project Cost 

Project Risk 

Information Technology 

PM, DM 

Afacan-Seref (2018) 3 Human Computer Interaction 

Gruhn (2006) 3 
Cognitive Architectures 

Task Environment 

Hackman (2021) 2 

Cognitive Processes 

Cognitive Science 

Probabilistic Models of Cognition 

Kieras (2015) 4 Information Systems 
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Cluster(s) Item RQ(s) Sub-topics 

Snow (2007) 3 Cognitive Architectures 

CM 

Mair (2009) 1, 2, 4 

Decision Model 

Complex Cognitive 

Task Environment 

Wang (2006) 2, 3, 4 
Individual Level 

Cognitive Science 

Fernandes (2022) 4 (Other topics) 

Flyvbjerg (2022) 1, 2 

Cognitive Architectures 

Computational Models 

Human Computer Interaction 

Wu (2022) 2, 4 Business Process Models 

Jiménez (2021) 1, 4 
Computational Models 

Probabilistic Models of Cognition 

Kieras (1997) 1, 2 

Computational Models 

Psychological Processes 

Complex Cognitive 

Information Systems 

Lakey (2003) 1, 2 Parameter Estimation 

Lee (2019) 1, 2 (Other topics) 

Ritter (2019) 1, 4 

Psychological Processes 

Parameter Estimation 

Decision Model 

Tavares (2002) 1, 4 Project Cost 

Vinciarelli (2015) 2 
Software Project Management 

Information Technology 

Aranda (2005) 1 Software Project Management 

Chater (2008) 1 

Decision Model 

Behavioral Decision Making 

Information Systems 

Task Environment 

Fan (2010) 1 

Cognitive Architectures 

Computational Models 

Human Computer Interaction 

Fleischmann (2014) 1 

Software Project Management 

Software Engineering 

Resource Allocation 

García (2006) 1 (Other topics) 



 

 

 

61 

Cluster(s) Item RQ(s) Sub-topics 

Gigerenzer (2008) 1 

Cognitive Architectures 

Computational Models 

Reinforcement Learning 

Griffiths (2010) 1 Computational Models 

Howes (2009) 2 

Software Project Management 

Project Cost 

Machine Learning 

Kennedy (2010) 1 Computational Models 

Kennedy (2012) 1 
Software Development Projects 

Software Project Management 

Kouskouras (2007) 2 

Cognitive Processes 

Research and Practice 

Theory of Project 

Software Project Management 

Decision-making Processes 

Planning Fallacy 

Software Project Management 

Kyllingsbæk (2006) 1 

Computational Models 

Cognitive Science 

Human Computer Interaction 

Software Development Projects 

Support Software Project 

Laird (2010) 1 

Parameter Estimation 

Software Development Projects 

Support Software Project 

Liu (2009) 1 (Other topics) 

Mair (2012) 1 

Decision Model 

Software Development Projects 

Software Project Management 

Resource Allocation 

Machine Learning 

Montibeller (2015) 2 
Software Project Management 

Software Engineering 

Nobandegani (2019) 2 Cognitive Architectures 

Riesterer (2020) 1 (Other topics) 

Sanborn (2010) 1 (Other topics) 

Snider (2003) 1 

Decision Model 

Individual Level 

Project Management Research 

Behavioral Decision Making 
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Cluster(s) Item RQ(s) Sub-topics 

Sukhodolsky (2001) 1 

Behavioral Science 

Planning Fallacy 

Availability Bias 

Tavares (1994) 2 Cognitive Architectures 

Tsesliv (2022) 2 (Other topics) 

Valiente (2012) 1 Cognitive Architectures 

Venkatesh (2018) 1 

Complex Cognitive 

Future Research 

Psychological Processes 

Zugal (2011) 1 Information Systems 

DM 

Chen (2008) 1 Cognitive Processes 

Flyvbjerg (2021) 2 
Psychological Processes 

Problem Solving 

Griffiths (2012) 1 
Computational Models 

Human Computer Interaction 

Hiatt (2022) 1 

Computational Models 

Psychological Processes 

Problem Solving 

Business Process Models 

Software Project Management 

Software Engineering 

PM 

Abdel-Hamid (1989) 3 Project Risk 

Anderson (1996) 3 (Other topics) 

Anderson (2003) 3 

Cognitive Architectures 

Computational Models 

Human Computer Interaction 

Barros (2000) 4 
Software Project Management 

Resource Allocation 

Bendoly (2007) 3 

Cognitive Architectures 

Computational Models 

Human Computer Interaction 

Borji (2012) 3 Software Project Management 

Chernova (2022) 3 (Other topics) 

Emond (2003) 3 
Cognitive Science 

Business Process Models 

Fagerholm (2022) 3 Software Project Management 
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Cluster(s) Item RQ(s) Sub-topics 

Ferreira (2009) 3 

Cognitive Architectures 

Cognitive Science 

Task Environment 

Jarecki (2020) 3 Decision Model 

John (1994) 4 Computational Models 

Kontogiannis (2005) 4 Cognitive Architectures 

Kotseruba (2020) 3 
Complex Cognitive 

Cognitive Architectures 

Kriegeskorte (2018) 3 

Software Development Projects 

Project Management Research 

Support Software Project 

Cognitive Processes 

Heloisa (1995) 4 Behavioral Decision Making 

Jöhnk (2020) 4 (Other topics) 

Rubinstein (2001) 3 

Software Project Management 

Project Risk 

Fuzzy Cognitive Maps 

Software Development 

Reinforcement Learning 

Williams (2003) 3 (Other topics) 
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Figure 29. Cross-tabulation of clusters showing the relationship of studies between clusters. Synthesis of studies within each cell provides results for the 

connection between the topics. Cluster sub-group abbreviations can be found in Cluster Sub-Group Label Abbreviations.
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Figure 30. Cross-tabulation of research questions and clusters. Columns show which research 

question was identified in the data extraction phase, while rows show the corresponding cluster 

assignments.  

RQ1 RQ2 RQ3 RQ4

Cognitive Architectures 3 3 0 3

Computational Models 5 2 2 4

Cognitive Science 3 1 1 2

Human Computer Interaction 6 3 1 1

Psychological Processes 2 0 1 4

Task Environment 1 0 0 1

Problem Solving 1 1 0 1

Software Development 0 0 2 0

Business Process Models 0 0 1 2

Parameter Estimation 0 0 0 2

Reinforcement Learning 0 0 1 0

Probabilistic Models of Cognition 0 0 0 1

Fuzzy Cognitive Maps 0 0 1 0

Software Project Management 0 0 1 0

Software Project Management 0 0 20 9

Project Cost 0 0 3 1

Software Engineering 0 0 5 1

Project Risk 0 0 3 3

Information Technology 0 0 3 3

Resource Allocation 0 0 5 1

Machine Learning 0 0 2 0

Fuzzy Cognitive Maps 0 0 1 0

Business Process Models 0 0 1 0

Internal and External 0 0 1 0

Behavioral Science 0 1 0 0

Decision Model 0 0 2 1

Software Development Projects 0 0 5 1

Complex Cognitive 1 1 0 0

Project Management Research 0 1 2 0

Behavioural Decision Making 0 0 1 0

Information Systems 1 1 0 0

Support Software Project 0 0 1 0

Cognitive Architectures 0 0 0 0

Psychological Processes 0 0 0 0

Cognitive Processes 1 0 2 0

Software Engineering 0 0 1 0

Theory of Project 0 0 1 0

Software Project Management 0 0 1 0

Decision-making Processes 0 0 1 0

Planning Fallacy 0 0 1 0

Availability Bias 0 0 0 0

CB

DM

PM

CM
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5 Discussion 

This section will begin by exploring the scope of reproducibility of cognitive pro-

cesses using CM techniques. In doing so, a few different theoretical approaches to 

understanding cognition will be discussed and their relevance to cognitive science 

research interpreted. This will lead to the discussion of behavioral science and the 

influence that CM research does, can, and should have on the field. Eventually, dif-

ferent models of PM processes will be presented, and their applicability to SPM will 

be discussed. Finally, the preconditions for applying such models to SPM, and for 

developing new conceptual models, will be considered, and the opportunities for 

the ideas of this study to strengthen the robustness of cognitive science will be out-

lined in the Synopsis. 

5.1 Reproducibility of Cognition 

Computational models of complex cognitive processes like decision-making are rel-

evant for understanding the scope of how CM can reproduce cognition. In one 

study, researchers implemented decision models in ACT-R to further examine the 

underlying sub-processes of cognition in decision-making strategies;138 in another, 

CM was used to study the cognitive interaction of individuals and their task-envi-

ronments in dynamic decision-making.39  

Decision-making has also been modeled on a neurocomputational level using 

weighted alternatives in sensory dynamics, which included biases in model deci-

sions.139,140 Another study with similar methods observed the effects of motivation 

on decision-making using rewards to observe behavioral variables in task environ-

ments.141 Although such models with a bottom-up approach are at times a more 

precise fit to the underworking of human behavior, the current state of cognitive 

science research depends on the refinement of cognitive theories and building com-

plete theoretical pictures from a top-down perspective.  

More research has been conducted in modeling spatial path-planning, where it was 

argued that path-planning was advantageous to three cognitive domains: creativity, 

adaptivity, and decay.142 Creativity and perceptual path-planning are related by hu-

mans being able to create new paths to goals with limited visual information, which 

 

138 (Fechner et al., 2015) 
139 (Afacan-Seref et al., 2018) 
140 (Kriegeskorte & Douglas, 2018) 
141 (Vassena et al., 2019) 
142 (Reitter & Lebiere, 2010) 
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has implications for creatively finding other paths in one’s visual field. This as-

sumption can be easily carried over into the SPM domain by assessing the creativity 

of project managers’ decisions in software projects. Adaptivity explains the ability 

for humans to adapt to environmental stimuli by forming mental models in a form 

of a mental topological map; this could also be applied to SPM by developing con-

ceptual models of different topological maps in visual project task environments. 

Decay combines memory recall to explain how behaviors may change as the mental 

models start to degrade, which also has interesting implications in potential mod-

eling research. 

Other cognitive processes have been modeled by researchers as well. One study 

looked at syllogistic reasoning and found that the state of CM focused in this area is 

in dire need of improvement.143 Another study adapted ACT-R to mechanistically 

model motivation based on the expected value of control theory which is the dominant 

theory for fitting motivation inside a computational framework.144 The exploration 

of modeling cognitive processes extends to the comparison between different mod-

eling approaches, such as probabilistic and rational models. 

5.1.1 Probabilistic vs. Rational Models 

The separation between probabilistic and rational models suggests significant in-

sights into the assorted ways in which complex cognitive phenomena are conceptu-

alized and simulated. Researchers have argued that probabilistic models do more 

to reproduce human cognition because they take a top-down approach by attempt-

ing to explain behavior and reducing it to lower-level cognitive processes.80 Proba-

bilistic models such as Bayesian models of cognition have the scope of modeling 

multiple cognitive processes, from perception and categorization to inductive rea-

soning and argumentation,145 perception, memory, learning, and decision-mak-

ing;146 but fail to model algorithmic or process-approaches accurately.143 Neverthe-

less, observing humans as probabilistic machines does not account for human be-

havior when considering all aspects of social environments that form the bases of 

motivations for rational behavior. 

Rational models of cognition provide a deeper understanding of how environmen-

tal factors together with psychological processes influence cognition. Conjoining 

 

143 (Riesterer et al., 2020) 
144 (Yang & Stocco, 2022) 
145 (Chater et al., 2010) 
146 (Lee, 2018) 
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these levels of analysis into computational models has been completed by some re-

searchers to model category learning,147,148 with the benefit of including both cate-

gory and reinforcement learning, something that cognitive architectures ACT-R and 

Soar do not do.64,149  

Another argument for rational models is supported by Monte Carlo simulation 

techniques. Monte Carlo simulation has been identified to support rational model 

development by its capacity to reduce probabilistic computations into a single op-

eration of ‘generating samples from a probability distribution.’150 Furthermore, the 

features of Monte Carlo techniques are already part of fundamental psychological 

processes, being used previously in psychological process models for decision-mak-

ing, as one example.151  

ACT-R uses a rational analysis approach to model knowledge, asserting that the 

odds of knowledge being used in a certain context determines how it is made avail-

able. In taking this approach, Anderson developed ACT-R to model the domains of 

memory, categorization, and problem-solving, with the implication that complex 

cognition used in these domains is simply a ‘reflection of one’s environment 

mapped into the cognitive space’64. In developing cognitive architectures, like ACT-

R and Soar, researchers combine theory and computation to provide comprehensive 

structures for modeling complex cognition.  

5.1.2 Cognitive Architectures 

Although many suggest that research attention into the further optimization of cog-

nitive architectures will push the current start of the art for cognitive science,152 An-

derson’s ACT-R architecture already models complex cognition at an industry 

standard level. In the development of ACT-R, they claimed that intelligence is 

simply the accrual of numerous small units of knowledge that makeup complex 

cognition; then these parts can be fine-tuned, studied, and the whole of cognition 

can be replicated using CM techniques.64 The strength of ACT-R as an approachable 

architecture comes from it being able to model thought and memory at symbolic 

and sub-symbolic levels both, and there are several use cases for ACT-R to model 

various aspects of cognition.  

 

147 (Sanborn et al., 2010) 
148 (Wang & Laird, 2010) 
149 (Laird, 2008) 
150 (Sanborn et al., 2010, p. 1147) 
151 (Chater et al., 2010, p. 13) 
152 (Gray, 2008) 
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Researchers in one study created a computational cognitive model of users’ online 

‘web-surfing’ behavior based on the ACT-R architecture.65 Their model quantifies 

web links in terms of relevance to users’ goals when using the internet, and it pro-

vides a baseline for future research in modeling digital information foraging, which 

essentially describes the main tasks of a software project manager. ACT-R has also 

been integrated into 3D game engines to bridge cognitive agents within cognitive 

architectures.153 Incorporating cognitive architectures into HCI research could be 

highly advantageous when considering the cognitive aspects of humans as the in-

teractive agents and its implications for cognitive science research.  

ACT-R has also been applied to model the dual processes theory of cognition, to 

show how the slow process (S-II) directly inhibits the fast process (S-I) in various 

tasks.75,154 Other researchers have applied ACT-R to model decision-making and S-I 

cognition, and were able to replicate human performance on implicit learning tasks; 

but the interesting aspect of this study is that their developed model was incon-

sistent with how procedural memory works in humans yet performed better on rec-

ognizing intentional tricks in the training data.155 This suggests two different con-

clusions: either what we think we understand theoretically about memory struc-

tures and their mechanisms is not entirely accurate, or, this knowledge is simply not 

properly implemented within the ACT-R cognitive architecture.  

Other processes such as visual attention can be mathematically modeled using both 

ACT-R and generalized architectures.156 Researchers in one study developed a com-

putational cognitive model that replicated the visual attention of searching a web 

page for textual information;157 and Kieras et al. implemented models of visual 

search using their EPIC architecture that further refined preliminary models.158  

Cognitive architectures for the most part do incorporate motor mechanisms into 

their constraints of cognition; however, one researcher has formalized a framework 

that integrated a computational model of reaction time (QN-ACES) within four cog-

nitive architectures (ACT-R, CAPS, EPIC, and Soar).159 When modeling reaction 

time, the researcher aimed to answer the question of why there is a delay from the 

time a stimulus is presented to when a response is initiated. In this way, the creators 

 

153 (Morita et al., 2019) 
154 (Kennedy & Bugajska, 2010) 
155 (Kennedy & Patterson, 2012) 
156 (Kyllingsbæk, 2006) 
157 (Chanceaux et al., 2014) 
158 (Kieras et al., 2015) 
159 (Liu, 2009) 
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of EPIC and QN-ACES models effectively included subtle aspects of human perfor-

mance into cognitive architectures from the perspective of HCI. Observing through 

a lens of behavioral science demonstrates how CM applied to HCI research is an 

important method in the development of both theories of cognition and HCI behav-

ior. 

5.2 Behavioral Science 

To understand the impact that CM can have on SPM, it is necessary to examine the 

interactive behavior of humans and technology. Researchers argue this relevance 

along with the ability for CM to anchor cyberpsychology theories into cognitive ar-

chitectures.160 Behavioral science experiments measuring human performance focus 

on whether tasks are familiar or not, whether the rules are simple or complex, and 

if visual cues are present in addition to their quality of information. As one example, 

Rubenstein et al. created a model of executive cognitive functioning that was used 

to measure performance in task-switching activities.161 Their experiments laid the 

groundwork for future computational models of executive control of cognitive pro-

cesses after task-switching performance was found to be hindered by familiarity.  

Behavioral decision-making research in project contexts also examines heterogene-

ous perceptions of project managers in its research.162 In this study researchers high-

light the presumption of random utility theory (RUT) being applied to a decision 

space when perceiving possible outcomes. Whether the result of individual percep-

tions has significant impact on task completion in projects requires further attention; 

but it is worthy to note the differences in choice between individuals, and the op-

portunity to include RUT in SPM modeling approaches to improve the scope of ra-

tional models.  

Of course, there are other approaches to rational choice in behavioral decision-mak-

ing. Researchers in one study argue that bounded rationality is cognitively con-

strained.163 While this assumption, aptly called cognitively bounded rationality, adapts 

the original theory of behavior to reduce limitations due to information processing, 

it intentionally narrows the space of possible behaviors that can be studied. Re-

searchers argue that by narrowing the behavioral space they are more finely tuning 

cognitive architectural research to focus on one specific theory or set of theories. In 

the development of cognitive architectures, research has argued for a multi-level 

 

160 (Emond & West, 2003) 
161 (Rubinstein et al., 2001) 
162 (Hackman, 2021) 
163 (Howes et al., 2009) 
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approach that comprises the interaction of both biological activity and the surfacing 

of behaviors from cognitive processes.164  

Researchers in another study examined decision-making behavior of IT project 

managers when making risk mitigating decisions, through the lens of EUT.165 The 

EUT model is robust enough to include a large range of possible outcomes, making 

it a worthy choice to model decisions in PM; however, what the researchers found 

in this study is a behavioral bias when project managers are to report risk: they will 

either deny, delay, or avoid uncertainty which leads to project risks not being 

properly managed. The effects of information processing on project management 

activities was also researched using decision-making behavior as the independent 

variable: researchers here suggested that access to greater amounts of situational 

information in project environments affects project managers’ actions and percep-

tions of both others and their own behavior.166 The study examines this through a 

lens of informed rationality which basically states that humans’ rational understand-

ing of a situation is information-dependent. When cognitive processing is depend-

ent on environmental or situational knowledge and processing, there are common 

misunderstandings of the behavior that results from so-called ‘mental shortcuts’ 

such as biases and heuristics. 

5.3 Cognitive Preconditions for SPM 

Researchers argue for the use of cognitively inspired models in the understanding 

of human behavior, as modeling of errors and biases cannot be properly accounted 

for in pure machine learning algorithms due to their inherently complexity.183 In an 

attempt to reduce the computational complexity of cognitive fallacies, researchers 

have modeled them with ‘perspective-implication’167 relationships, where the exist-

ence of one bias implies the existence of another based on their implied relationship. 

While this view is entirely mechanistic, there is some insight gained about the na-

ture of relationships between cognitive biases that may be implemented in formal 

cognitive models – or even simple models that are inclusive of cognitive mecha-

nisms. Such relationships are what make-up the formal preconditions that must be 

considered when modeling the complete cognitive path from stimuli to decision to 

behavior. 

 

164 (Jiménez et al., 2021) 
165 (Kutsch & Hall, 2005) 
166 (Bendoly & Swink, 2007) 
167 (Nobandegani et al., 2019) 



 

 

72 

5.3.1 Biases & Heuristics 

Errors and shortcuts in cognition are arguably what separates humans and ma-

chines, and the development of cognitive systems needs recognition of these invar-

iable miscues. There are varied reasons as to why humans need to take shorter cog-

nitive routes to achieve behavioral goals. Gigerenzer tackles the misconceptions of 

heuristics by scoping it into the concept of ecological rationality, which matches cog-

nitive processes to environmental structures and computationally analyzes its re-

sults.168 This form of CM takes a Darwinian approach at why humans need to 

quickly make decisions and come to conclusions about objects in their environment; 

the main idea lies in the claim that heuristics are not in fact cognitive limitations, 

but adaptations, and the proper selection of a heuristic in any scenario can be com-

putationally modeled and therefore studied. One study has looked at how different 

cognitive models themselves are biased in modeling decision-making;93 although it 

was inconclusive, the study provided groundwork for the concept that multiple 

cognitive models can simulate behavioral biases in different contexts.  

As an alternative take, Flyvbjerg strongly asserted that it’s a misconception to label 

all biases as cognitive. In their study on biases in PM, they highlight the top ten be-

havioral biases affecting project managers’ decisions.169 The study claimed that bi-

ases in PM are overly political; that is, the most prevalent bias as claimed by the 

study was strategic misrepresentation, also known as political bias or power bias. This 

bias is represented by humans deliberately or systematically misrepresenting infor-

mation as a strategy for their own perceived power. What this highlights is an im-

portant aspect of behavioral economics, that decision-making is not purely attached 

to rational or mechanistic cognitive processes, as RUT might proclaim;137 it varies 

based on individuals’ motivations and perceptions of the decision’s outcome.  

The other top biases in PM identified by Flyvbjerg were backed by other studies: 

Griffiths et al. found that anchoring and adjustment are common in software esti-

mation and can severely alter the estimations made regardless of estimation tech-

nique;72 Mohanani et al. found that anchoring and adjustment, availability, and con-

firmation bias were the most prevalent in current SE research;9 Cunha reviewed the 

most common biases in SPM, finding that planning fallacy was related to an over-

optimism to meet stakeholders’ expectations combined with a lack of knowledge in 

business and/or technology;136 and further qualitative research has highlighted the 

behavioral biases in PM, claiming that 60% of the time project managers’ status re-

ports were biased, with an overwhelming majority of status reports being optimistic 
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as opposed to pessimistic.170 These claims were again made in a review of the be-

havioral biases common to decision-making and risk analysis.70 Researchers in this 

study also suggested ways of debiasing decision-making processes, for example by 

adjusting the weights of initial decisions to avoid anchoring bias, that can be applied 

to SPM decisions. When considering biases and heuristics as cognitive precondi-

tions, one must also account for a software project managers’ experience level as it 

influences the volume and variety of cognitive mechanisms enacted in decisions.  

5.3.2 Domain Experience 

In their SLR, Cunha et al. apply the naturalistic perspective of decision-making in 

SPM to the research scope.135 Under the naturalistic point of view, instead of gener-

ating ‘option sets’ that span a space of possible behaviors, humans apply their do-

main experience to make judgements; and in this way they commit to a decision 

while anticipating a set of possible outcomes that could result from it. This high-

lights the importance of including project managers’ experience level into their de-

cision-making capabilities. Another study that used CM to assess the usability of 

touch screen UIs remarked on the necessity to include expertise into cognitive mod-

els, as skilled users are understood to perform tasks without an abundance of cog-

nitive processing.95 Similarly, another study showed how knowledge acts as a miti-

gating factor between project risk and developer performance in IS projects.171 Re-

gardless of to what extent knowledge flows throughout a project’s life cycle – espe-

cially considering the perspective of naturalistic decision making – certain precon-

ditions for models exist based on the dynamic behavior that is created by the deci-

sion space. 

5.4 Modeling SPM 

Revisiting the basic SPM model (Figure 13) shows how the researchers amended 

the model structure to include feedback loops within the project environment. 

While this model effectively encapsulates how feedback between activities in SPM 

changes the weight of project variables, one study has argued that the same model 

does not allow project managers to exact uncertainty in project activities, where 

Monte Carlo simulations were implemented as an additional step.172  
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Additional research applying system dynamics models to SPM has been conducted. 

In one study, aimed at assisting project managers in reducing uncertainty of pro-

jects, researchers developed a model to predict project complexity and more pre-

cisely control resource allocation.173 The researcher in another study provided a soft-

ware process simulation model and proposed to combine both system dynamics 

and discrete event models;103 however, the model proposed does not adapt to SPM 

processes as it is mainly concerned with iterations of the SDLC and not the manage-

ment aspects.  

Sukhodolsky’s model takes a step back from the others by seeing the project control 

process as a vital piece of SPM that can be modeled and optimized (Figure 14). 

While the advantage of this model is that it formulates the control process as a dis-

crete optimization problem; it does not fully encapsulate the intricacies of SPM from 

a cognitive perspective. Rather, the solution to problems faced at the control stage 

are, based on this model, fully dependent on the decisions of the project manager in 

Stage IV of the process. While this is a realistic approach, it does not make for an 

applicable model that can accurately predict project parameters.  

Researchers proposed an integrated framework that mixes software process simu-

lation methods with project knowledge to improve SPM processes.174 The benefit of 

this model is that it was meant for practicing project managers to use and under-

stand how to improve their processes, and because different software development 

methodologies can be implemented in the simulation model. However, it acts more 

as a process model than a cognitive model of SPM. This may be due to the nature of 

simulation methods because they often require a mechanistic flow from input to 

output and complex algorithms must be implemented to account for dynamics. 

The idea of adapting processes like planning and execution with inputs that are 

dynamic and adjusted in real time is valuable to SPM. In this light, Ge and Xu pro-

posed a model of software project scheduling.132 The proposed model incorporates 

a team productivity model that supports the project schedule generation process; a 

process that dynamically schedules and reschedules project tasks based on genetic 

algorithm optimizations.  

5.4.1 Applying Existing PM Models to SPM 

Activities within projects are inherently random. Tavares argued that most models 

of PM take a deterministic point of view to describe project resources and expenses, 

and therefore proposed a stochastic model that assumes a random nature of project 
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tasks and risks (Figure 10).175,176 The stochastic nature of a project network model, 

like the one highlighted by Tavares, describes how tasks with causal relationships 

have either direct or inverse effects on surrounding tasks. Furthermore, uncertainty 

stems from the fact that project activities do not have binary outputs; task comple-

tion itself is variably defined – the decision to label a task as completed is entirely 

subjective – but the goal of project delivery is clearly modeled. The challenge, then, 

of applying PM models to SPM is that there is arguably more uncertainty involved 

in software development activities, with varying team dynamics, requirements 

modifications, and unpredictable technical problems.  

A further issue in the PM field is intensified by analysts’ desire to build the most 

complex solutions to PM problems, giving in to the idea that elegance and impres-

siveness of algorithms equates to being able to solve real-world problems.177 Initial 

research into the computational methods of team formation in PM has been com-

pleted, which calls for a different type of decision-making to be modeled because 

certain personnel decisions are not immediately or visibly met with a metric of suc-

cess or failure.178 Models of team formation can be effectively applied to SPM mod-

els as team formation does not vary substantially between software projects and 

projects in other fields. 

Another challenge of applying PM models to SPM is taking consideration of the 

flow of knowledge throughout the project life cycle. Snider & Nissen argue that the 

PMBOK and similar methodologies do not account for the dynamic flow of 

knowledge within projects; addressing this aspect and applying it to model a soft-

ware project case study (Figure 11).105 Their model adds the dimensions of reach, 

time, and explicitness to PM models. These are vital dimensions to consider while 

transforming project flows into vectors; a technique that adds numerous research 

directions to CM in SPM. Such models can be highly malleable in the inclusion of 

cognitive processes when modeling cognitive mechanisms as well as user behavior.   

5.4.2 User Models 

Studying humans performing computer-interactive tasks creates an established 

baseline for CM research. Researchers proposed a framework for integrating task 

models with cognitive models using Petri net simulations to model the task envi-

ronment as a network (SPMNet; Figure 15).129 An important consideration of this 

model is the manually placed constraints by software project managers into the 
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model. Additionally, it is the only model covered in this research scope with a use 

case for project managers – other models have a learning curve meant for expert 

cognitive scientists, while SPMNet is meant to be used by managers themselves to 

optimize their workflow by implementing genetic algorithms to compute optimal 

resources.  

Furthermore, researchers have used computational models of shared workspaces to 

study the execution time of tasks of individuals within groups with human infor-

mation-processing models such as GOMS and KLM;174,179 while others have devel-

oped the method of ‘action modeling’41 to predict human behavior in circumstances 

where a decision needs to be made with alternative actions – using Soar as the main 

architecture.  

Aligning user and cognitive models into a task network has the advantage of using 

psychological metrics when evaluating task performance. This consideration high-

lights the implications of incorporating various cognitive factors into SPM models, 

a notion that finds resonance in process models. 

5.4.3 Process Models 

The main difference between process models and cognitive models is that typical 

business processes are inherently deterministic, where one task needs to finish be-

fore the next begins. This workflow does not accurately reflect the rational approach 

that humans take when making decisions and completing tasks in software projects. 

For example, UML diagrams have been used to model SE and ITSM processes by 

including ontology-based rules.2 While this is a convenient way to conceptualize SD 

processes, as rule-based ontologies closely align with SD practices, there is a lack of 

cognitive dynamics that would affect tasks within this model when applied to mod-

els of SPM.  

In one study, researchers use process modeling to evaluate, predict, and improve 

software processes, using Abdel-Hamid and Madnick’s software project model 

(Figure 13) to simulate the project environment.180 They used monte carlo simula-

tion techniques to improve upon the original model; but the main argument against 

the study is the lack of cognitive implications in project parameters. The researchers 

claim that creators of the original model did not incorporate uncertainty in its feed-

back system, hence the decision to include monte carlo simulations due to their abil-

ity to reduce abstract probabilistic computations to rational ones.181  
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Other research using simulated processes in the SPM domain has examined more 

closely the execution phase of software development and management, but the lack 

of scope and mechanistic view of project processes does not account for cognitive 

feedback within project or task variables.131  

Similar critiques can be made about WFM techniques for SPM. Researchers have 

applied WFM technology to control business and PM processes.100, Their approach 

was based on the ad hoc nature within the overarching network of tasks, arguing 

that business processes and PM are related by tasks, and these can be monitored and 

controlled using WFM tools. This idea makes the applicability of WFM models to 

model software projects high; however, research has failed to bridge this gap, and 

without considering cognitive preconditions of said tasks, the models do not accu-

rately reflect the complex dynamics of SPM.  

5.5 Applying Cognitive Preconditions to Models 

One study implemented cognitive complexity into BPM, but the lack of academic 

attention in the software domain and the inherent complexity of software processes 

gave researchers inconclusive results.5 A separate study was undertaken to mesh 

the gap between cognitive psychology and BPMs, where researchers displayed how 

chunking, computational offloading, and external memory provide a lower mental 

effort in the understanding of process models.44 Although human understanding of 

models is only the tip of the iceberg in this SLR – the importance of the models being 

able to accurately predict human behavior would be a sharper focus – the latter 

study raised an important aspect of the current state of modeling research. That is, 

incorporating human memory models into user, task, process, and behavioral mod-

els is essential to understanding and predicting human error in behavior from a 

cognitive perspective. One researcher suggested this, while also lobbying for the 

development of cognitive user models because of their estimation power of the dy-

namic effects of human performance.129  

Further attempts have been made to introduce cognitive aspects into process mod-

els,182,183 but more research remains on how to manage errors within such a system. 

For example, Figure 20 shows a proposed cognitive process management model. 

Although still a conceptual model, the disadvantage of this proposed system lies in 

the fact that it is a ‘black box’; if an error occurs anywhere within the process, there 
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is a heavy load of cognitive and manual effort that a manager must take to resolve 

or even understand the nature of the error using this system.  

Fuzzy Cognitive Maps 

It is possible to use FCMs to model dynamic behavior of software project managers 

while considering cognition. The comparison of FCMs to cognitive models is in the 

fuzzy logic system of FCMs which is considerate of certain cognitive dynamics.  

For example, the model that Tlili et al. proposed (Figure 16) only examines the sin-

gular aspects of risk in SPM. If similar attention was expended in each of the pro-

cesses in SPM, and those were collectively analyzed and compared, it would pro-

vide a more comprehensive view of the interactions inside projects. Comparatively, 

the model proposed by Chernova et al. (Figure 17) provides a comprehensive scope 

that includes the whole software project life cycle. The disadvantage is that it does 

not focus in-depth on the relationships between the processes as the former model, 

although it does provide insights into the conditional aspects of these relationships. 

Combining these models – by adapting every node of Figure 17 to have the same 

depth as Figure 16 – researchers could effectively visualize all aspects of SPM while 

further accounting for cognitive preconditions.   

Others have recognized FCMs to be a useful method for representing human cog-

nition. In their review of cognitively inspired methods of modeling decision-mak-

ing processes, researchers identified developments of FCMs in multi-attribute deci-

sion-making (MADM) research.184 They argue that fuzzy sets can properly manage 

the complexity and uncertainty involved in MADM and human thinking. Adapting 

computationally complex modeling methods like FCMs is not without its draw-

backs, however, because increasing the modeling complexity transmutes symbolic 

graphical models into computational models that require more precise metrics for 

assessing their accuracy. When critiquing certain methods for being black boxes, 

FCMs and neural networks are along the same lines, where analysts must rely on 

error metrics to establish measures of accuracy and efficiency of these models.  

5.6 Model Accuracy 

Choosing one model over another is an important subject of focus in current re-

search.86,95,143 Generally, the ability of a model to describe mental processes accu-

rately is measured using the goodness of fit (GOF) metric, which describes various 
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errors in the model’s ability to explain variance.185 GOF is important for model se-

lection because it has the capability to explain cognitive processes as they occurred 

in the data, accounts for the most amount of variance, and is easy to calculate,186 but 

there is an argument against relying on this metric alone to account for model accu-

racy: researchers in one study proposed a method of selection called minimum de-

scription length – where generalizability takes priority above GOF – and concludes 

that for a model to generalize properly to new data it needs to be simplistic enough 

that complex data does not lead to overfitting.187 This suggests that generalizability 

can be used to supplement GOF as an additional measure of accuracy. Although 

generalizability can be defined as a computable function that measures expected 

error of model predictions,188 using it as an accuracy metric adds to the idea that 

applying computational models is outside the realm of skills that a normal, non-

expert researcher, analyst, or project manager should wield.  

To further improve model accuracy measures, researchers have ventured into ‘geo-

metrically modeling complexity’189, which could prove to be highly useful when 

modeling complex and uncertain environments like software projects. Complexity 

is a tradeoff analysts must consider when using GOF as a measure of accuracy, 

much like the two edges of Occam’s razor: cognitive models need enough complex-

ity to encapsulate underlying processes yet must be simplistic enough to be gener-

alizable and avoid overfitting.  

As a final note to the discussion, the choice of model, modeling concept, framework, 

or theory bears no weight if the initial research question asked in not suited for a 

CM task. Shürmann and Beckerle proposed a conceptual framework for this pur-

pose.19 Using their framework, researchers could formally answer the question ‘is 

my research question fit for modeling?’, and subsequently develop and refine their 

proposed model until they reach a stable starting point. Furthermore, Lee et al. ar-

gued that increasing the robustness of computational modeling in cognitive science 

advances the reliability of empirical psychological findings.78 They proposed that 

researchers should provide detailed reports of their modeling decisions, pre- and 
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post-study. What they are arguing for would add confidence to the findings gener-

ated in cognitive and behavioral science and would increment theoretical 

knowledge. It becomes evident that the success of CM centers not only on the choice 

of appropriate theoretical frameworks but also on the alignment of research ques-

tions, consequently reinforcing the relationship between theoretical precision and 

experimental robustness. 

5.7 Synopsis 

The SLR and its outcomes highlighted advantageous approaches to modeling SPM 

that provide a baseline understanding of the existing and potential relationship be-

tween the fields of cognitive/behavioral science and SPM, and how CM can be a 

worthwhile technique for expanding the knowledge in both cognitive theories and 

PM. The findings herein pinpoint a clear direction for future studies that further 

measure the shared characteristics between these bodies of research. In completion 

of the study, the main objectives can be answered as follows. 

Scope and reproducibility of cognition using CM 

With cognitive architectures such as ACT-R and Soar, cognitive processes of deci-

sion-making, knowledge acquisition, memory, attention, planning, reasoning, and 

intelligence can be deduced into the computational level using various theoretical 

approaches. Therefore, cognitive processes are reproducible using CM techniques; 

but the level of reproducibility and the scope of what cognitive processes can be 

applied is determined by the individual researcher’s intentions and decision rules.  

Replicability of computer-interactive human behavior  

CM techniques can replicate behavior resulting from the interaction of humans with 

technology by eliciting cognitive steps in the interaction between motor and sensory 

experiences. Models such as GOMS and KLM use the MHP framework to replicate 

human behavior to a level that allows precise measure at different levels of analysis.  

Preconditions of applying CM to SPM 

Cognitive preconditions exist that affect the reproducibility of many SPM behav-

iors. Cognitive and behavioral biases are one of the preconditions that require con-

sideration when developing cognitive models, as they have been identified in the 

literature to severely affect PM activities. Another precondition for modeling is the 

project manager’s domain experience, as it correlates to the level of cognitive pro-

cessing needed to make decisions.  
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Pre-existing models of PM 

Of the existing models of PM, there are models that focus specifically on one aspect 

of PM, whether it is planning or risk management, and there are models that focus 

on the dynamics of interaction between PM activities in the complete project life 

cycle.  

Thresholds for modeling SPM 

The thresholds that exist when using CM to model SPM are entirely dependent on 

the cognitive theories used by the modeling researcher, along with any limitations 

of those theories, or if there are thresholds specifically placed by the researcher to 

narrow their study scope or to otherwise invoke some level of control over their 

research. Behavioral thresholds are also dependent on the individual researcher’s 

decisions; but as SPM is constrained to a specific set of behaviors, the thresholds are 

less theoretical and more empirical by nature.  

Accurate vs. inaccurate models of SPM 

The accuracy of how well CM replicates certain cognitive mechanisms is dependent 

on the metrics used to measure both the model’s fit to human behavior and the in-

tentions of the researcher. The GOF metric is the main method used to assess accu-

racy of computational models, which uses common error measures such as RMSE 

and maximum likelihood to observe how accurately models fit predictions to ob-

served behavioral data.  
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6 Conclusion 

The SLR and its relevant analyses has highlighted the existing research in the fields 

of CM, SPM, HCI, and cognitive science. In doing so, it has also brought to the dis-

cussion table the gaps in research between these research domains. While there are 

numerous complexities involved in modeling cognitive processes and applying the-

oretical approaches to SPM, this study has shown the emergence of literature that 

has begun to synthesize these topics into a homogeneous group and reduce research 

scope complexity.  

The most significant discrepancy observed in this study is in the semantic definition 

of cognitive modeling. Cognition can be modeled (conceptually) using symbolic 

methods, and it can also be modeled (mathematically) using algorithmic compo-

nents; however, the observation after scanning the literature is that the difference in 

mathematical, computational, and conceptual or symbolic, is convoluted and at 

times these levels are used interchangeably. This misuse of terminology is not pre-

sent in every study – there are several that clearly define and scope either compu-

tational or symbolic CM into their research – but the overall observation is that these 

terms are often used together to define cognitive modeling as both mathematical and 

conceptually symbolic.  

Another observation is the lack of distinguishment, at times, between process and 

cognitive models. Process models are innately separate from cognitive models due 

in large part to the synchronous initiation and completion of project activities, and 

these two cannot be combined in the same definition. Although certain process 

models, as highlighted through this SLR, can contain cognitive elements (empha-

sized in the next section on future research directions), cognitive mechanisms do 

not have the same synchronous flow as tasks in industrial or mechanical environ-

ments do. Furthermore, software project activities are in themselves not restricted 

to sequential processes, and although researchers have used process models to de-

scribe SE projects, they cannot completely account for cognition as interpreted.  

Finally, there exists a wide body of research and practice in different PM methodol-

ogies – waterfall, agile, lean, etc. – that are underrepresented in the literature en-

compassing this SLR. Agile development, one methodology that is dominating the 

mainstream project practices in software development, is not comprehensively 

modeled using CM techniques. While this can be seen as a research limitation, that 

agile practices not being included in the research scope is the cause of the research 

gaps, there is a more concise argument that even with the focus of different PM 

methodologies a similar amount of literature would be discovered.  
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6.1 Critical Reflection 

Some automatic limitations occur when adjusting the scope to fit within this study’s 

resource constraints. First, when limiting SPM behavior to be only the computer-

interactive behavior (such as monitoring project progress from a visual dashboard 

or interacting with colleagues online), there is a complete social and environmental 

component that is missing. Some researchers have argued that this component is 

more essential than the cognitive processes themselves.Error! Bookmark not defined. The inter-

action between colleagues on virtual platforms provides sufficient social activity to 

observe the effects on human performance in the domain of SPM; however, this 

requires focused attention and research. Second, there is room for the inclusion of 

both internal and external aspects of managing software projects: at the individual 

level, there is vast potential to research the motives, feelings, and personality traits 

of managers, while on the interpersonal level, there is a social dynamic between 

individuals that can be theorized to moderate cognitive mechanisms. Although the 

research scope requires psychological theories that are inclusive of all these ele-

ments, the goal of focusing research on cognitive science is precisely to narrow the 

cognitive aspects of phenomena.  

Other limitations of the study can be criticized from a technical standpoint. Specifi-

cally, the choice of algorithm used when clustering documents for analysis after SLR 

inclusion is such a limitation. The Lingo3G algorithm was utilized because it comes 

pre-packaged with EPPI-Reviewer software, but its parameters were not manipu-

lated or otherwise optimized. The intention was to provide a benchmark analysis to 

directly observe the effects of document classification; thus, the results of this study 

should be interpreted from this perspective. Future studies have the opportunity of 

expanding on this work by more precisely fine-tuning the clustering model’s hy-

perparameters, and by testing different clustering algorithms and analyzing the re-

sults.  

6.2 Recommendations for Future Research 

One study called for more research in computational models of interaction, under 

the lens that individuals’ social lives are often determined by complex and uncon-

scious cognitive processing, and the current analysis techniques of human behavior 

do not account for the meaning that individuals construct from social interactions.190 

The social aspects of PM add another level to the environmental aspects of cogni-

tion. Including this in future research on CM could provide a supplementation to 
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cognitive theory. When researching models of attention, researchers identified need 

for studies that more closely examine the variation in time between tasks with dif-

ferent levels of demand in interactive and complex environments.191 Perception is 

an under-studied concept in SE research although many processes include key per-

ceptual mechanisms involving the visual field, such as text comprehension (i.e., 

reading code), and summarizing large amounts of information using visuals.192 

In PM research, there is limited literature addressing the combination of rational 

and intuitive management processes.193 One study introduced the idea of using a 

metric of entropy to evaluate and structure the effects of cognition on PM.7 Another 

study highlights the lack of integrated approaches that are used in SPM-related sim-

ulations, arguing that software project knowledge, software development pro-

cesses, and project-related awareness and learning are not optimally merged when 

leveraged to study PM decision-making.174 In the software context, there is an iden-

tified gap in research that links PM and cognitive biases.136  

Formal literature on how to build cognitive process models, and systematic reviews 

highlighting the characteristics of what defines a ‘process model’, would be highly 

advantageous to the scientific community. Additionally, cognitive user models as 

simulation tools have been mentioned as a future step in modeling research.129 Con-

necting process models to probabilistic models is a potential way of modeling the 

mind.60 Additionally, modeling psychological phenomena from a probabilistic in-

ference perspective is a prospective field of research.73  

6.3 Outlook 

While the study of cognition is dynamically complex, supporting research of the 

different theoretical approaches is necessary to progress the field of cognitive sci-

ence. By adapting CM techniques and computational models into formal PM and 

SPM models, the gap between research domains would be fulfilled in methodical 

and measurable ways. Finally, as human-computer interactive behavior can be used 

as a theoretical lens to observe these domains, supplementary research that com-

bines cognitive elements within behavioral models is required to enhance the incor-

poration of all factors into academically sound theories.  
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Appendix A. MHP Principles of Operation 

Principle Description Equation 

Variable Perceptual Processor 

Rate 
The cycle time of the Perceptual Processor diverges with stimulus intensity. 

𝜏𝑝 , 

where  𝜏 =  cycle time 

and 𝑝 = perceptual processor 

Variable Cognitive Processor 

Rate 

Processor cycle time decreases when more effort is needed from task demands 

or information load. 

𝜏𝑐  , 

where  𝜏 =  cycle time 

and 𝑐 = cognitive processor 

Fitt’s Law 
The time it takes to move a hand (𝑇𝑝𝑜𝑠) to a target (of size 𝑆) which lies a certain 

distance away (𝐷). 

𝑇𝑝𝑜𝑠 = 𝐼𝑀 log2
𝐷

𝑆
+ 0.5 , 

where 𝐼𝑀 = 100[70~120]msec/bit 

Power Law of Practice 
The time it takes to perform a task on the 𝑛th iteration (𝑇𝑛), which is 

determined by a power law. 

𝑇𝑛 =  𝑇1𝑛−𝛼 , 

where 𝛼 = 0.4[0.2~0.6] 

Uncertainty 
Decision time (𝑇) increases with uncertainty about judgments or decisions to be 

made. 

𝑇 =  𝐼𝐶𝐻 , 

where 𝐻 =  information-theoretic 

entropy of the decision, 

and 𝐼𝐶 = 150[0~157]msec/bit 

Rationality 

Humans act rationally to attain their goals, depending on the task, and action is 

bounded by limitations in knowledge of the task and information processing 

ability. 

Goals + Task + Operators + Inputs + Knowledge + 

Process limits → Behavior 

Problem Space 

The problem space that defines the bounds of how humans rationally solve 

problems is determined by: 

1. A set of states of knowledge, 

2. Operators that change one state into another, 

3. Constraints that control how operators are applied, 
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Principle Description Equation 

4. Knowledge that guides the decision of which operator to apply next. 

Recognize-Act Cycle of the 

Cognitive Processor 

Contents in Working Memory initiate the actions they are associated with in 

Long-Term Memory. 

Modifies Working Memory on every cycle of the Cognitive Processor. 

 

Encoding Specificity 

The type of encoding operation after perception determines what is stored in 

Memory. 

Different retrieval cues are variably effective in affording access to what is 

stored. 

 

Discrimination 
Memory retrieval difficulty is determined by what is in Memory and the relation 

to retrieval cues used. 
 

*data from (Card et al., 1983, p. 27)
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Appendix B. SPMNet Formal Definition 

A SPMNet graph 𝑆 is defined as,  

𝑆 = (𝑃, 𝑇, 𝐶, 𝐸), 

where, 

𝑃 = {𝑃𝑎𝑏 , 𝑃𝑎𝑡 , 𝑃𝑝, 𝑃𝑑}, 

𝑇 = {𝑇𝐼 , 𝑇𝑂 , 𝑇𝐷𝑂}, 

𝐶 = {𝐶𝑟 , 𝐶𝑐}, 

𝐸 = {𝐸𝐼𝐼 , 𝐸𝐼𝑂 , 𝐸𝑂𝐼 , 𝐸𝑂𝑂 , 𝐸𝐷𝑂𝐼 , 𝐸𝐷𝑂𝑂 , 𝐸𝐷𝑂𝐼𝐼}, 

with a set of places (𝑃),  

• 𝑃𝑎𝑏 = abstract activity,  

• 𝑃𝑎𝑡 = atomic activity,  

• 𝑃𝑝 = software product,  

• 𝑃𝑑 = decision, 

a set of constraints (𝐶) associated with each activity, 

• 𝐶𝑟 = resource constraints, 

• 𝐶𝑐 = complexity constraints, 

a set of transitions (𝑇), 

• 𝑇𝐼 = input transitions to activity places, 

• 𝑇𝑂 = output transitions from activity places, 

• 𝑇𝐷𝑂 = output transitions from decision places 

and a set of arcs (𝐸), 

• 𝐸𝐼𝐼 = input arcs to transitions 𝑇𝐼 from product places, 

• 𝐸𝐼𝑂 = output arcs from transitions 𝑇𝐼 to activity places, 

• 𝐸𝑂𝐼 = input arcs to transitions 𝑇𝑂 from activity places, 

• 𝐸𝑂𝑂 = output arcs from transitions 𝑇𝑂 to product or decision places, 

• 𝐸𝐷𝑂𝐼 = input arcs to transitions 𝑇𝐷𝑂 from decision places 

• 𝐸𝐷𝑂𝑂 = output arcs from transitions 𝑇𝐷𝑂 to product places 

• 𝐸𝐷𝑂𝐼𝐼 = input arcs to transitions 𝑇𝐼 from decision places 
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Appendix C. Cluster Sub-Group Label Abbreviations 

Abbreviation Meaning 

AB Availability Bias 

BDM Behavioral Decision-Making 

BPM Business Process Models 

BS Behavioral Science 

CA Cognitive Architectures 

CC Complex Cognitive 

CM Computational Models 

CP Cognitive Processes 

CS Cognitive Science 

DM Decision Model 

DMP Decision-Making Processes 

FCM Fuzzy Cognitive Maps 

HCI Human-Computer Interaction 

IE Internal and External 

IL Individual Level 

IS Information Systems 

IT Information Technology 

ML Machine Learning 

PC Project Cost 

PE Parameter Estimation 

PF Planning Fallacy 

PMC Probabilistic Models of Cognition 

PMR Project Management Research 

PP Psychological Processes 

PR Project Risk 

PS Problem Solving 

RA Resource Allocation 

RL Reinforcement Learning 

SD Software Development 

SDP Software Development Projects 

SE Software Engineering 

SPM Software Project Management 

SSP Support Software Projects 
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Abbreviation Meaning 

TE Task Environment 

TP Theory of Project 

 

Appendix D. Python Source Code 

D-1 Data Cleaning  

import pandas as pd 

from bs4 import BeautifulSoup 

import requests 

import re 

 

# Load the table into a pandas dataframe 

df_train = pd.read_csv('../Docs/training_set_cleaned.csv') 

df_all = pd.read_csv('../Docs/labels_50239.csv') 

df_only_true = pd.read_csv('../Docs/labels_50239__only-true-
predictions.csv') 

 

def fix_empty_author_and_doi(df): 

    # Create empty columns for author(s) and DOI 

    df['author'] = '' 

    df['doi'] = '' 

 

    # Loop through each row in the DataFrame 

    for index, row in df.iterrows(): 

        # Get the title and journal from the current row 

        title = row['title'] 

        journal = row['journal'] 

 

        # Construct the query URL 

        query = f"{title} {journal} doi" 

        url = f"https://www.google.com/search?q={query}" 

 

        # Make the request to the query URL 

        response = requests.get(url) 

 

        # Parse the HTML response using BeautifulSoup 

        soup = BeautifulSoup(response.content, 'html.parser') 

 

        # Find the first search result link 

        link = soup.find('a') 

 



 

103 

 

        if link: 

            # Get the URL of the first search result 

            url = link.get('href') 

 

            # Check if the URL contains "doi.org/" 

            if "doi.org/" in url: 

                # Extract the DOI from the URL 

                doi = url.split("doi.org/")[1] 

 

                # Update the DOI column in the DataFrame 

                df.at[index, 'doi'] = doi 

 

                # Make a request to the DOI URL 

                doi_url = f"https://doi.org/{doi}" 

                doi_response = requests.get(doi_url) 

 

                # Parse the HTML response using BeautifulSoup 

                doi_soup = BeautifulSoup(doi_response.content, 
'html.parser') 

 

                # Find the author(s) information 

                author_tags = doi_soup.find_all('meta', attrs={'name': 
'citation_author'}) 

 

                # Extract the author(s) information 

                authors = [tag.get('content') for tag in author_tags] 

 

                # Join the author(s) into a single string 

                author_string = ', '.join(authors) 

 

                # Update the author column in the DataFrame 

                df.at[index, 'author'] = author_string 

 

    # Save the updated DataFrame to a new CSV file 

    df.to_csv('../Docs/labels_50239_with_author_and_doi.csv', 
index=False) 

 

def fix_empty_abstracts(data): 

    for i, row in data.iterrows(): 

        # Check if the abstract is missing or null 

        if pd.isnull(row['abstract']): 

            # Extract the title and journal from the current row 

            title = row['title (1)'] 

            journal = row['journal'] 
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            # Build the query URL 

            query = f'{title} {journal}' 

            url = 
f'https://scholar.google.com/scholar?q={query}&hl=en&as_sdt=0,5' 

 

            # Send the request to Google Scholar and parse the response 

            response = requests.get(url) 

            soup = BeautifulSoup(response.text, 'html.parser') 

 

            # Find the first search result and extract the abstract 

            result = soup.find('div', {'class': 'gs_ri'}) 

            if result: 

                abstract = result.find('div', {'class': 'gs_rs'}).text 

                data.loc[i, 'abstract'] = abstract.strip() 

 

    # Save the updated table to a new CSV file 

    return data.to_csv('../Docs/train_table_with_abstracts.csv', 
index=False) 

 

def clean_citations_from_abstrackr(data): 

    # drop unnecessary columns 

    drop_columns = ['consensus', 'pubmed id', 'keywords', 'authors', 
'tags', 'notes', 'labeled_at', '(source) id'] 

    data = data.drop(columns=drop_columns, errors='ignore') 

    # rename columns 

    data.rename(columns={'labeled_at.1': 'labeled_at', 'aaronalt': 
'relevance', '(internal) id': 'citation_id'}, 

                inplace=True) 

    for i, row in data.iterrows(): 

        if pd.isnull(row['title']): 

            continue 

        data.loc[i, 'title'] = re.sub(r'[^\w\s-]', '', row['title']) 

        data.loc[i, 'title'] = data.loc[i, 'title'].strip().lower() 

    # fix duplicates 

    data = data.drop_duplicates(subset='title') 

    # separate rows with '0' label into a new dataframe 

    data_zeros = data[data['relevance'] == 0] 

    data = data[data['relevance'] != 0] 

    # clean empty abstracts, journals 

    for i, row in data.iterrows(): 

        # Check if the abstract is missing or null 

        if pd.isnull(row['abstract']): 

            # Extract the title and journal from the current row 

            title = row['title'] 

            journal = row['journal'] 
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            # Build the query URL 

            query = f'{title} {journal}' 

            url = 
f'https://scholar.google.com/scholar?q={query}&hl=en&as_sdt=0,5' 

            # Send the request and parse results 

            response = requests.get(url) 

            soup = BeautifulSoup(response.text, 'html.parser') 

            # Find the first search result and extract abstract 

            result = soup.find('div', {'class': 'gs_ri'}) 

            try: 

                if result: 

                    abstract = result.find('div', {'class': 
'gs_rs'}).text 

                    data.loc[i, 'abstract'] = re.sub(r'[^\w\s-]', '', 
row['abstract']) 

                    data.loc[i, 'abstract'] = abstract.strip().lower() 

            except TypeError: 

                continue 

    # Fill null values 

    data['relevance'] = data['relevance'].fillna(0) 

    # Join with Abstrackr predictions 

    df_pred = pd.read_csv('../Docs/predictions_50239.csv') 

    df_pred = df_pred.drop(columns='title', errors='ignore') 

    df_pred.rename(columns={'(internal) id': 'citation_id'}, 
inplace=True) 

    data = pd.merge(data, df_pred, on="citation_id", how="left") 

    data = data.loc[:, ~data.columns.duplicated()].copy() 

    data = data.dropna(subset=['abstract', 'title']) 

    # Save the updated tables to new CSV files 

    data.to_csv('../Docs/labels_50239_cleaned.csv', index=False) 

    data_zeros.to_csv('../Docs/labels_50239_zeros.csv', index=False) 

 

clean_citations_from_abstrackr(df_all) 

fix_empty_author_and_doi(df_only_true) 

 

D-2 Springer Link CSV to Bibtex  

import springer_link_csv_to_bibtex_parser 

import argparse 

 

parser = argparse.ArgumentParser(description='Convert a SpringerLink 
auto-generated CSV references file to Bibtex') 

parser.add_argument('-i','--input', help='Provide the path to your input 
csv file', required=True) 

parser.add_argument('-o','--output', help='Provide the path to your 
output folder', required=True) 
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parser.add_argument('-s','--source', help='Source of csv creation: 
springer, orange, zotero...', required=True) 

args = vars(parser.parse_args()) 

 

csv_to_bibtex_parser = 
springer_link_csv_to_bibtex_parser.CsvToBibtexParser(args['input'], 
args['output'], 

                                                                            
args['source']) 

csv_to_bibtex_parser.convert_csv_to_bibtex() 

D-3 Springer Link CSV to Bibtex Parser 

import pandas as pd 

import re 

import requests 

from bibtexparser.bwriter import BibTexWriter 

from bibtexparser.bibdatabase import BibDatabase 

from bs4 import BeautifulSoup 

 

 

def split_camel_case_joined_names(joined_camel_case_names): 

    individual_camel_case_names = re.finditer('.+?(?:(?<=[a-z])(?=[A-
Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', 

                                              joined_camel_case_names) 

    return [name.group(0) for name in individual_camel_case_names] 

 

def split_joined_names(joined_names, name_type): 

    individual_names = str() 

    if name_type == 'camel': 

        individual_names = re.finditer('.+?(?:(?<=[a-z])(?=[A-
Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', joined_names) 

    elif name_type == 'semicolon': 

        individual_names = re.finditer(re.escape("[^;\s][^\;]*[^;\s]*"), 
joined_names) 

    return [name.group(0) for name in individual_names] 

 

def join_names_as_camel_case(name): 

    names_list = re.split('([^a-zA-Z\u00C0-\u024F\u1E00-\u1EFF])', name) 

    first_name_lower_case = names_list[0].lower() 

    other_names_camel_case = [name.capitalize() for name in 
names_list[1:] if name.isalnum()] 

    camel_case_list = [first_name_lower_case] + other_names_camel_case 

    camel_case = ''.join(camel_case_list) 

    return camel_case 
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class CsvToBibtexParser: 

    """ Given a CSV file path to a SpringerLink auto-generated refer-
ences CSV and an output_file_path, provide the 

     functionality to parse the CSV into an equivalent bibtex (.bib) 
format """ 

 

    def __init__(self, csv_file_path, output_file_path, file_source): 

        self.csv = pd.read_csv(csv_file_path) 

        self.output_path = output_file_path 

        self.source = file_source 

        if self.source == 'springer': 

            self.fix_empty_abstracts() 

 

    def fix_empty_abstracts(self): 

        # Create empty column for abstract 

        self.csv['Abstract'] = '' 

        for i, row in self.csv.iterrows(): 

            # Extract the title and journal from the current row 

            title = row['Item Title'] 

            journal = row['Publication Title'] 

            # Build the query URL 

            url = row['URL'] 

            # Send the request to Google Scholar and parse the response 

            response = requests.get(url) 

            soup = BeautifulSoup(response.text, 'html.parser') 

            # Find the first search result and extract the abstract 

            result = soup.find('div', {'id': 'Abs1-content'}) 

            # abstract = result.find('div', {'id': 'Abs1-content'}).text 

            try: 

                self.csv.at[i, 'Abstract'] = result.strip() 

            except TypeError: 

                self.csv.at[i, 'Abstract'] = result 

            except AttributeError: 

                self.csv.at[i, 'Abstract'] = result 

        print(self.csv.head()) 

 

    def convert_csv_to_bibtex(self): 

        csv_dict = self.csv.to_dict('records') 

        writer = BibTexWriter() 
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        with open(self.output_path, 'w', encoding="utf-8") as 
bibtex_file: 

            for csv_entry in csv_dict: 

                bibtex_entry = self.convert_csv_entry_to_bibtex_en-
try(csv_entry) 

                bibtex_file.write(writer.write(bibtex_entry)) 

 

    def convert_csv_entry_to_bibtex_entry(self, document_record): 

        bibtex_key = self.create_bibtex_entry_key_from_csv_entry(docu-
ment_record) 

        bibtex_entry = BibDatabase() 

        authors_list = self.get_authors_from_csv_entry(self.source, doc-
ument_record) 

        formatted_authors_list = self.remove_braces_and_quotes_from_au-
thors_list(authors_list) 

        if self.source == 'orange': 

            bibtex_entry.entries = [ 

                {'journal': str(document_record['journal']), 

                 'title': str(document_record['title']), 

                 'abstract': str(document_record['abstract']), 

                 'keywords': str(document_record['relevance']), 

                 'ENTRYTYPE': 'Article', 

                 'ID': str(document_record['citation_id'])} 

            ] 

        elif self.source == 'springer': 

            bibtex_entry.entries = [ 

                {'journal': str(document_record['Publication Title']), 

                 'title': str(document_record['Item Title']), 

                 'author': formatted_authors_list, 

                 'year': str(document_record['Publication Year']), 

                 'abstract': str(document_record['Abstract']), 

                 'doi': str(document_record['Item DOI']), 

                 'url': str(document_record['URL']), 

                 'journalVol': str(document_record['Journal Volume']), 

                 'journalIssue': str(document_record['Journal Issue']), 

                 'ENTRYTYPE': str(document_record['Content Type']), 

                 'ID': bibtex_key} 

            ] 

        else: 

            bibtex_entry.entries = [ 

                {'journal': str(document_record['Publication Title']) or 
str(document_record['journal']), 

                 'title': str(document_record['Title']) or str(docu-
ment_record['title']), 



 

109 

 

                 'author': formatted_authors_list, 

                 'year': str(document_record['Publication Year']), 

                 'doi': str(document_record['DOI']), 

                 'url': str(document_record['Url']), 

                 'ENTRYTYPE': str(document_record['ItemType']), 

                 'abstract': str(document_record['Abstract Note']), 

                 'pages': str(document_record['Pages']), 

                 'issue': str(document_record['Issue']), 

                 'volume': str(document_record['Volume']), 

                 'ID': str(document_record['Key'])} 

            ] 

        return bibtex_entry 

 

    def create_bibtex_entry_key_from_csv_entry(self, csv_entry): 

        if self.source == 'springer': 

            document_authors = self.get_authors_from_csv_en-
try(self.source, csv_entry) 

            print(csv_entry) 

            first_author = document_authors[0] 

            first_author_camel_case = join_names_as_camel_case(first_au-
thor) 

            document_year = csv_entry['Publication Year'] 

            return first_author_camel_case + str(document_year) 

        else: 

            print(csv_entry) 

 

    @staticmethod 

    def get_authors_from_csv_entry(source, csv_entry): 

        if source == 'springer': 

            document_authors = str(csv_entry['Authors']) 

            document_authors_list = split_camel_case_joined_names(docu-
ment_authors) 

            return document_authors_list 

        document_authors_list = list() 

        document_authors = str() 

        try: 

            document_authors = str(csv_entry['Authors']) 

        except KeyError: 

            document_authors = str(csv_entry['Author']) 

        finally: 

            if document_authors.find(';'): 

                document_authors_list = split_joined_names(document_au-
thors, 'semicolon') 
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            elif not document_authors.find(';'): 

                document_authors_list = split_joined_names(document_au-
thors, 'camel') 

            return document_authors_list 

 

 

    @staticmethod 

    def remove_braces_and_quotes_from_authors_list(authors_list): 

        authors_list_without_braces = str(authors_list)[1:-1] 

        authors_list_without_braces_or_quotes = str(authors_list_with-
out_braces).replace("'", "") 

        return authors_list_without_braces_or_quotes 
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